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Convolutional Autoencoder for MRI modality
synthesis

Felix KLINGELHOEFER, François ROUSSEAU

Abstract—In Magnetic Resonance Imaging, various pulse sequences are used to produce image contrasts that give
different information on tissues. Having access to more modalities can therefore be useful for subsequent processing by
a multi-modal algorithm, or one optimized for a particular contrast. We propose a Deep Learning based method for
modality synthesis. More specifically, we use a Convolutional Auto-Encoder that we train on input patches extracted
from T1-w images and the corresponding T2-w images. This neural network is then compared to another
state-of-the-art algorithm called Magnetic Resonance Image Example-Based Contrast Synthesis (MIMECS) [16], and is
shown to outperform it on our data both in precision and running time.

Index Terms—Deep Learning, Convolutional Auto-Encoder, Image synthesis, MRI contrast.
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1 INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is
a medical imaging technique that uses

strong magnetic fields and radio waves in order
to produce 3-dimensional images of organs.
Contrary to Computed Tomography, it does not
utilize ionizing radiation, which often makes it
the preferred option for visualizing tissues.

It is commonly used in neuroimaging to in-
vestigate conditions such as dementia, epilepsy
or cerebro-vascular diseases. There are several
different modalities that are adapted to visual-
ize different tissues (Figure 1):

T1-w In T1 weighted images, fat (and
therefore white matter) appears
bright and fluid (in particular the
cerebro-spinal fluid) dark. It is good
for visualizing the brain anatomy.

T2-w T2 weighting makes fluid bright
and fat somewhat less bright, mak-
ing it useful for visualizing some
types of pathology.

FLAIR Fluid-attenuated inversion recovery
weighting nullifies the signal of
fluid, and is used for disorders such
as Multiple Sclerosis lesion.

Fig. 1. Three different MRI contrasts. a) T1, b) FLAIR, c) T2.

These contrasts capture different and com-
plementary information on the tissues, so many
algorithms use multi-modal processing, where
several modalities are used simultaneously,
whereas others are optimized for a particular
contrast which best captures the relevant in-
formation. However, sometimes some image
sequences are not available, either because they
were not taken (due to limited scan time), or
are of poor quality (as the result of movement
artifacts for example).

In these cases, contrast synthesis can pro-
vide a replacement for the missing sequences,
allowing the use of the desired algorithms. Be-
cause some information is unique to a given
modality, it is not possible to replicate the miss-
ing contrast exactly, but the approximation can
be of sufficient quality to analyze the data better



INTERNSHIP REPORT, JULY 2017 2

Fig. 2. MRI modalities and synthetic results from our neural network and the example based method MIMECS. a) T1-w input, b)
T2-w ground truth, c) Our method, d) MIMECS

than with the original contrast (for example to
segment brain lesions).

State-of-the-art methods for modality syn-
thesis are mostly example based: several stud-
ies [10], [16], [15] and [17] all use sparse cod-
ing approaches on patches to build a new
sequence from a different one, and an atlas
(that contains both the initial and target con-
trasts). Similar techniques have been used for
other computer vision problems such as super-
resolution or image denoising, for which recent
research has shown that deep learning, and in
particular convolutional neural networks, can
provide better results [4], [1].

Motivated by these successes, we consider a
deep convolutional auto-encoder for modality
synthesis. In order to improve our results, nu-
merous recently-developed techniques of deep
learning are applied to the neural network, and
variations to its architecture are experimented.
Visual and numerical results are presented in
Figures 2 and 3.

Fig. 3. Mean squared error of our neural network through train-
ing, and of MIMECS for reference

Finally, we show that our method performs
better than a recent example based approach
called Magnetic Resonance Image Example-
Based Contrast Synthesis (MIMECS) [16] even
when training for a single epoch (Figure 3).
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2 OVERVIEW OF DEEP LEARNING

Deep learning is the application of neural net-
works to learning tasks. Even though the theory
behind it dates back several decades, its use has
seen a surge in the past few years, thanks to the
increase in computing power that came from
GPU processing. It is now applied to many
fields including bioinformatics, speech recogni-
tion, machine translation and computer vision.
Specialized architectures have been developed
to adapt it to the specific requirements of these
different fields. We will start by explaining
what an artificial neural network is, then see
how it can be trained automatically, and finally
present two classes of nets that are adapted
to image synthesis: Convolutional Neural Nets
and Auto-Encoders.

2.1 Artificial Neural Networks

Artificial neural networks are inspired by bio-
logical neural nets (animal brains). The human
central nervous system for example is made
up over 86 billion neurons, with over 7000
synapses each, connecting them to the other
neurons. In comparison, most artificial neural
networks only have between several thousand
and a few million units, which are very simpli-
fied versions of neurons.

2.1.1 Neurons and computational equivalent

Fig. 4. Simplified mathematical model of a neuron from
http://cs231n.github.io/neural-networks-1/

Figure 4 shows a coarse mathematical ap-
proximation of a single neuron that will be used
for computation. In the mathematical model,

the neuron described by the function g per-
forms the composition of a linear function f of
its inputs and an activation function a:

g = a ◦ f (1)

The linear function f can be described with
the following formula: for an input vector X ∈
Rn, a weight vector W ∈ Rn and a bias b the
output is

f(X,W, b) = b+

n∑
i=1

WiXi (2)

A neuron that has an input of length n
is described by n + 1 parameters: n weights
and one bias. These parameters will be learned
throughout training, In order to best fit the
output to the expected results.

The signal then goes through an activation
function that is non-linear. We will use two of
them: the sigmoid function σ(x) = 1/(1 + e−x)
and the Rectified Linear Unit (ReLU) which
computes f(x) = max(0, x). It has been shown
that the ReLU significantly improves perfor-
mance compared to the sigmoid function, or
the hyperbolic tangent function [13]. For this
reason the network will mainly use ReLUs for
non-linearity, and the sigmoid function only to
normalize the output, on the last layer.

2.1.2 Layered architecture
A neural network is a collection of neurons, and
can be represented as an acyclic graph where
a single neuron is a node and the connections
between neurons are the vertices. The neurons
are then organized in layers. The basic layer is a
fully-connected (or dense) layer, in which every
neuron is connected pairwise to every neuron
of the previous layer. This can be described
as a matrix product and addition: given an
input vector X ∈ Rn, a fully connected layer
of d neurons, described by the weight matrix
W ∈ Mn,d(R) and bias vector B ∈ Rd, and that
uses the activation function a, will compute

f(X,W,B) = a(W.X +B) (3)

In this case, the hidden layer has (n + 1) ∗ d
parameters: n ∗ d weights and d biases. These
layers can then be stacked one after the other to
produce a neural network, as seen in figure 5.
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Fig. 5. Neural Network with two dense hidden layers from
http://cs231n.github.io/neural-networks-1/

2.2 Training

The idea behind machine learning for neural
nets is that all its parameters can be learned
automatically through training. It is most often
done through supervised training where the
neural net is fed with input and the desired
corresponding output. It is then necessary to
assess the quality of the output of the net for
a given input, compared to the desired one:
that is done by a loss function. In order to
progressively improve its results, the algorithm
attempts to minimize the loss function through
stochastic gradient descent and backpropaga-
tion: it determines what changes in parameters
could have provided better results on an input
batch and then updates them, and repeats this
thousands of times.

2.2.1 Loss function
The loss function measures the quality of the
output of the neural network. As training will
consist in trying to minimize it, it must be lower
on results that are closer to the desired output.
In our case, we will be working with images,
and will call these desired output images the
ground truth.

To compare the neural net’s output images
X to the ground truth T (as flattened pixel
intensity vectors), there are two functions, the
first of which is the mean absolute error (mae),
and the second the mean squared error (mse).

mae(X,T ) =
1

n

n∑
i=1

|Xi − Ti| (4)

mse(X,T ) =
1

n

n∑
i=1

(Xi − Ti)2 (5)

Both these functions are sensitive to inten-
sity scaling: if the intensity of two images are
multiplied by two, their mse is multiplied by
four and their mae by two. This means all
the input and ground truth images need to be
normalized to a given intensity before being
passed to the neural network.

2.2.2 Stochastic Gradient Descent
This method is a stochastic approximation of
the gradient descent optimization method. The
goal of training is to minimize the loss func-
tion over the entire training dataset. In order
to achieve this, the stochastic gradient descent
method consists in iteratively computing the
approximate gradient at a data point of the
input, by using the backpropagation method,
and then updating the weights proportionally
to the gradient.

Backpropagation uses the chain rule to cal-
culate the partial derivative with respect to
every parameter of a previous layer, and can
be used successively for every layer until the
input.

The parameter vector (weights and biases) w
is then updated proportionally to the gradient
of the loss function L:

w := w − η∇L(f(I, w), T ) (6)

where f is the neural network function, I is the
input, T the ground truth and η is the learning
rate.

In order to get a better approximation of the
gradient, it is in practice calculated on batches
of input. The size of the batches is a hyperpa-
rameter (non trainable parameter of the neural
network) that is often simply determined by
memory constraints. For batches of size n, the
weight update formula becomes

w := w − η

n

n∑
i=1

∇L(f(I, w), T ) (7)

Many improvements upon the basic
stochastic gradient descent have been
proposed. We will use Adam (short for
Adaptive Moment Estimation) [12], which
uses the running average of gradients and the
second moment of gradients to smooth out
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parameter updates, given by the following
formulas.

m(t+1)
w := β1m

(t)
w + (1− β1)∇wL

(t)

v(t+1)
w := β2v

(t)
w + (1− β2)(∇wL

(t))2

m̂w =
m

(t+1)
w

1− βt
1

v̂w =
v
(t+1)
w

1− βt
2

w(t+1) := w(t) − η m̂w√
v̂w + ε

(8)

Using the same notations as before, and index-
ing the training iteration with t. β1 and β2 are
the forgetting factors for the gradients and their
moments, and ε is simply a small number to
avoid division by zero. m indicates the gradi-
ents, and v their second moment, while m̂ and
v̂ are their respective running averages.

The training algorithm makes multiple
passes on the input dataset in order to con-
verge towards a satisfying local minimum in
the high-dimensional parameter space. IT can
be stopped either after an arbitrary number of
passes, also called epochs, or when a condition
on the loss is satisfied (for example, when the
loss on some validation data falls below a given
threshold). To avoid getting stuck in a cycle, the
data is shuffled each epoch.

2.3 Convolutional Neural Networks
Many computer vision problems are translation
invariant: for example in image classification,
the result should not be changed by a transla-
tion (as long as the object of interest stays in the
frame). In these tasks, neural nets often work by
trying to detect features (for a face, the darker
areas of the eyes and mouth, and their shape,
for example) everywhere in the picture. This
motivated the use of convolutional layers in-
stead of dense layers, which have shown much
better empirical results [14].

In a convolutional layer, the neurons are
arranged along the same dimensions as the
input (2D for an image, 3D for a volume), to
which one dimension is added. A kernel is
then convolved along the input: a given neuron

is connected to every neuron that is within
its window in the previous layer (Figure 6).
Neurons are always connected along the last
dimension. Intuitively, a convolutional layer
can be seen as a collection of filters that are
applied to an image (or volume), and produce
a collection of images arranged along a third
dimension. Every neuron then has a limited
spatial receptive field, but is connected to sur-
rounding neurons of a previous layer, no matter
from which filter.

Fig. 6. Diagram of a 3x3 convolution ker-
nel (K) applied to a 7x7 image (I) from
https://cambridgespark.com/content/tutorials/convolutional-
neural-networks-with-keras/index.html

The goal of these restriction is to be able
to have more neurons in a network without
the number of learnable parameters exploding.
Instead of having (xi−1 ∗ yi−1 ∗ zi−1 ∗ nfilters,i−1 +
1) ∗ xi ∗ yi ∗ zi ∗ nfilters,i learnable parameters,
where x, y, and z are the dimensions of the
previous layer, it has only (kx∗ky∗kz∗nfilters,i−1+
1) ∗ nfilters,i, with ki being the size of the kernel
along the i axis. To give an idea of the magni-
tude of the reduction, for a 300× 300× 3 image
(3 color channels) connected to a 300× 300× 20
dense layer, there would be over 486 billion
learnable parameters. Using a convolutional
layer with a 5 × 5 window, this number is
reduced to 1520.

One side-effect that needs to be pointed
out is that the output of a convolutional layer
will be slightly smaller than its input, when no
padding is added to the input, as illustrated in
Figure 6. This is because a convolutional kernel
cannot be applied to a pixel if it would go over
the border of the image. This means that for a
kernel of size Kx∗Ky, and an input of size Ix∗Iy,
the output O would have dimensions
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Ox = Ix −
Kx − 1

2

Oy = Iy −
Ky − 1

2

(9)

Thanks to this limitation of parameters, con-
volutional neural networks can stack many lay-
ers (often ten or more). It has been found em-
pirically that adding depth to the networks is
usually preferable to making the kernels larger,
and proven for some particular problems [5].
One reason for this is that the receptive field
of a neuron increases by stacking layers: for
example, a neuron after two 3× 3 convolutions
has an effective 5 × 5 receptive field, the same
as after one 5×5 convolution. It also adds more
non-linearities, which have a positive effect on
results.

For this reason, and because 3D convolu-
tions have more learnable parameters and are
more computationally expensive than 2D ones,
we will use only 3 × 3 × 3 kernels, in order to
make deeper networks.

2.4 Auto-Encoders
Auto-Encoders are a class of Artificial Neural
Networks. Their goal is to encode an input
by reducing its dimensions, and then to re-
construct the original input from its reduced
representation (Figure 7). They are not partic-
ularly good at this task however, since hand-
crafted compression algorithms perform better
than them in most cases, as for example jpeg
for image compression. Luckily, they do have
other uses. Indeed, dimensionality reduction
makes them extract robust features from im-
ages, which enables them to perform well on
tasks such as denoising [20] and in our case
contrast synthesis.

An autoencoder that uses convolutional lay-
ers is called a convolutional autoencoder. Its ar-
chitecture follows the pattern of autoencoders:
first the dimensions of the input image or vol-
ume are reduced, through either strided con-
volutions or pooling layers (usually maximum
pooling), and then are increased through up-
sampling layers. This is the type of neural net-
work that will be used for contrast synthesis.

Fig. 7. Schematic of an Autoencoder with 3 hidden fully-
connected layers from https://en.wikipedia.org/wiki/Autoencoder

3 ARCHITECTURE OF THE NEURAL
NETWORK

In this section we will start by presenting the
baseline architecture and training dataset and
will then test variations to the architecture, and
dataset.

3.1 Baseline architecture
As stated previously, a convolutional autoen-
coder will be used for the contrast synthesis,
since this problem involves volumes, for which
convolutions are particularly adapted, and in
order to transform one contrast to another the
neural net needs to extract features from the
base image, hence the use of an autoencoder.
Figure 8 presents the architecture that will serve
as baseline.

This neural net is sequential: three convolu-
tional layers are followed by one max pooling
layer, followed by another three convolutions,
one upscaling layer, and two more convolu-
tions. All convolutions have a kernel of size
3×3×3, and 32 filters. It is noteworthy that this
network doesn’t actually compress the data,
since the intermediate representation is actually
four times bigger than the input size, because
of the number of filters. It does however reduce
the dimensions of the input, which is the basis
for auto-encoders.

3.2 Training dataset and preprocessing
The dataset that was used for training consists
of pairs of MRIs, with T1 and T2 weighting,
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Fig. 8. Diagram of our base architecture. Each convolutional layer has 32 filters.

for one hundred different patients. Each im-
age has voxels of size 0.7 × 0.7 × 0.7 mm3.
Their dimensions where 260× 311× 260. In the
network, each dimension is halved through a
pooling layer, and then doubled, which means
that the output was of size 260 × 310 × 260,
effectively cropping the image by one on the
y axis, which wasn’t a problem because the
brains where surrounded by a fair amount of
background voxels (with zero intensity). In the
base experiment, the network is trained on the
ninety first patients, and tested on the ten last.
We also explored training it only on the ten first
patients, while validating on the same ten last,
and will discuss those results in section 3.4. This
work focuses on the problem of synthesizing
a T2 weighted contrast from the T1, but the
same network could be used for the opposite
transformation, or any other contrast synthesis,
if provided with the appropriate data. The MRI
acquired T2-w image will be called ground
truth T2 (as opposed to synthetic T2 for those
produced by an algorithm).

Before training the network, both modali-
ties for a same patient need to be registered.
This means an algorithm has to be used in
order to find the coordinate system that offers
the best anatomical juxtaposition between both
contrasts, but this had already been done on the
dataset.

Brain masks provided with the dataset were
then applied to the images in order to strip the
skulls from the brains. This allows the network
to focus only on learning the contrasts transfor-
mations of interest, those for the brain.

As intensities can vary significantly between
two MRI images, the voxel (equivalent of pixels
for volumes) values need to be normalized be-

fore the image is given to the neural network.
The first attempt to do so was by dividing all
intensity values by the maximal value, to get
voxel intensities in the [0,1] range, but we no-
ticed that the output of the neural net often had
an intensity shift compared to the ground truth.
This issue was solved by dividing all intensity
values by three times the mean intensity (cal-
culated only on the non-zero intensity voxels),
because the mean intensity was less subject to
variation than the maximum, so the normalized
ground truth would have less unpredictable
intensity shifts. This second technique therefore
gave better results.

Finally, to obtain a large number of train-
ing inputs, smaller patches are extracted from
the base images. Due to memory limitations,
patches of size 38×38×38 voxels were extracted
from the T1 images, with a step of 16. To avoid
getting patches that contain mainly background
voxels with null intensities, patches whose cen-
tral voxel (16,16,16) are not within the brain
mask are discarded. Because no padding was
added to the convolutional layers, they crop the
input, and the output size of the neural network
for these patches is only 16 × 16 × 16 voxels,
so patches of this size (centred at the same
point) were extracted from the corresponding
ground truth T2 images. In total, 89 018 patches
were obtained from the first 90 patients, and an
additional 9 692 patches for validation, from the
ten last patients.

The implementation was done using the
Keras library [2], running on the Theano back-
end [19]. This software was running on a
NVidia GeForce GTX 1080 Ti graphics card with
11 GB of video ram, and 64 GB of normal
ram. A batch size of 32 was used for training,
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because of video memory limitations.

3.3 Tweaking for deeper networks

When this deep neural net was first trained, it
did not converge at all, and was stuck produc-
ing black output no matter the length of prior
training.

Layer saturation may account for this prob-
lem: the signal may explode or vanish in the
network, in turn blocking any further train-
ing. This phenomenon is explored more deeply
by existing studies [7], and is caused by the
variance of the signal being successively mul-
tiplied at every layer. In order to prevent this
problem, many elaborate initialization schemes
have been developed. We used an existing one
[9], wherein the initial weights for the convo-
lutional layers are sampled from the normal
distribution N (0,

√
2/nin

f ), with nin
f being the

number of filters of the previous layer.
Another phenomenon that can prevent suc-

cessful training in deeper networks is called
internal covariate shift: throughout training, the
statistical distribution of the output of a neural
layer is ever changing, which means the next
layer must adapt to the changing form of its
input, thereby slowing down the learning pro-
cess. One solution to this problem is using batch
normalization [11], which normalizes the mean
and variance of the output of a layer for every
batch. It also has the added benefit of reducing
the risk of signal saturation. For these reasons,
a Batch Normalization layer is added before
every hidden convolutional layer.

After these changes, it was possible to train
the network successfully, as shown in Figure 9.

3.4 Architecture cross-validation

In this section, we will discuss experiments
with small changes to the baseline architecture
in order to justify the choices that are made.
The training time was a limiting factor to the
number of experiments made. Indeed, it took
over 800 seconds per epoch to train the base
model, and all experiments involved 60 epochs
of training. This choice seemed like a reason-
able compromise between training time and

Fig. 9. Test (90 first patients) and validation (10 last) loss through
training for 60 epochs of the baseline network

performance: as can be seen in Figure 9, the
convergence slows down significantly before
the 60 epoch mark.

3.4.1 Network width
Two new networks were trained to determine
the influence of the width of the network on
the results. The first, which will be called shal-
low, only has 16 filters on every convolutional
layer, and the second, called wide, has 48. As
a reminder, the base network has 32 filters per
layer.

Fig. 10. Results of training for 60 epochs on the base model (32
filters), a wider (48 filters) and a narrower (16 filters) variant

As could be expected, the neural network
performs better the more filters there are on ev-
ery convolutional layer (Figure 10). The perfor-
mance increase is however much more signifi-
cant between the narrow and the base model,
than between the base and the wide model.
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The number of parameters increases as the
square of the number of filters per layer: the
wide network has 376 849 learnable parameters
against 168 289 for the base model. For this
reason, the training time also increases signifi-
cantly between the models: approximately 400s,
820s, and 1880s per epoch respectively.

3.4.2 Network depth
To test the influence of the network’s depth
on its performance, two variants to the base
model were trained. The first is deeper, and
has an additional convolutional layer before
the max-pooling, between the max-pooling and
the up-sampling and after the upsampling (4-
4-3 for a total of 11 convolutional layers). The
second is shallower, having one convolutional
layer less in every section (2-2-1 for a total of 5
convolutional layers).

Fig. 11. Results of training for 60 epochs on the base model (8
convolutional layers), a shallow (5 convolutional layers) and a
deep (11 convolutional layers) model

The results indicate that depth has a very
similar effect to width on transformation qual-
ity (Figure 11). The number of parameters how-
ever increases much less: the deep network has
251 521 learnable parameters, which is a linear
increase from the 168 289 of the base model
in the number of convolutional layers, when
accounting for the fact that the first and last
layers have a reduced number of parameters.

Even though the time complexity increase
is nearly linear in the number of convolutional
layers to process a large image, it is far greater
for smaller patches. Indeed, as the network
gets deeper, in order to produce the same size

outputs, the input must become increasingly
large because each convolution crops the im-
age, through the lack of padding on the input.
In practice, this means that the deeper network
was trained on 46 × 46 × 46 voxel patches (in-
stead of 38 × 38 × 38 for the base model, and
30×30×30 for the shallow variant), which leads
to a great increase in training time: around 2040
seconds per epoch against the base 820, or 280s
for the shallow model.

3.4.3 Alternative architectures
Experiments were also undertaken with two
alternative architectures, the first attempt be-
ing to use progressive dimensionality reduction
and increase, by using three max-pooling layers
and three Up-Sampling layers, always on one
single dimension, as seen in Figure 12. The
results were nearly indistinguishable, both in
loss throughout training and in training or pro-
cessing time. For these reasons, the idea wasn’t
pursued any further.

The second attempt was inspired by the
work of Kaiming He et al. (2015) on residual
connections [8]. The idea behind a residual
connection is that some information skips a part
of the network (one or more layers), and is then
added back. In our case, we tried concatenating
the output of the third convolutional layer to
the input of the seventh, essentially skipping
the pooling and up-sampling (Figure 13). The
intuition behind this was that the network
would learn both the abstract features thanks to
the auto-encoder part, while retaining high def-
inition information on the image thanks to the
residual connection, in order to produce more
precise output. It didn’t turn out to improve the
synthetic output however, with both training
and validation loss nearly identical to that of
the network without a residual connection, and
at the cost of somewhat increased training time
(over 1000s per epoch).

3.5 Importance of dataset size and overfit-
ting
As described earlier, in the base experiment,
the Neural Network is trained on ninety pa-
tients. To determine the impact of the size of
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Fig. 12. Schematic of the architecture using a progressive pooling and up-sampling

Fig. 13. Schematic of the architecture using a residual connection

the dataset on the results, we tried training
it on only eleven patients. In order to have
comparable data, a similar number of patches
were extracted from the first ten patients as
was from the ninety, by setting the extraction
step to 8 (versus 16 previously). In total, 84 890
patches were obtained in this case, against 89
018 previously. The validation was done on the
same patches from the ten last patients as in the
prior experiments.

Fig. 14. Results of training for 60 epochs on the base model
and the same model on a smaller dataset (11 images). Test
= training loss and Validation = validation loss, on the same
validation data

The results, seen in Figure 14, show that
the network performs significantly better on

the validation data when it is trained on more
patients. Furthermore, contrary to the base ex-
periment where test and validation data remain
nearly identical throughout training, the net-
work exhibits overfitting when trained on the
smaller dataset.

Overfitting describes the phenomenon
where a Neural Network adapts too strongly
to its input data, that isn’t general enough. For
example, a classifier that learns to distinguish
between cats and dogs, but is only trained
on images of black dogs and white cats will
probably identify a black cat as a dog, or a white
dog as a cat. To prevent this problem, Neural
Networks should be trained on datasets that are
as general as possible. It can be recognized by
the divergence of training and validation loss
throughout the training process.

In this case, it seems like eleven patients is
not enough to build a robust generalization for
this network. Results on the small dataset could
surely be improved by using techniques such
as kernel regularization [3], or dropout [18], to
prevent overfitting, but the results will always
remain less good than that of the same network
trained on a bigger dataset. We applied both
these techniques to the base network, but on the
larger dataset they showed worse convergence,
so they were not used in further networks.
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The best way of improving results with
scarce training data is probably through unsu-
pervised pre-training, where the network can
learn to familiarize itself with the type of data
it will process. This has shown to act as a
regularizer, and prevent over-fitting [6]. Con-
trary to dropout and kernel regularization, this
should also not negatively affect results on a
larger dataset, but we did not implement such
a training scheme, due to lack of time.

4 RESULT ANALYSIS

In this section, we will compare the synthesized
T2 contrasts of our method, after training, to
the synthetic T2 images produced by another
state-of-the-art method, MIMECS [2], that uses
an example-based approach. In order to syn-
thesize contrasts, example based approaches
use an atlas, consisting of an mri image with
the original contrast, and another one with the
desired contrast for a same patient, to build a
dictionary that maps patches from the image
with one contrast to the other. This dictionary is
then used to transform patches from the input
image into the desired contrast.

A comparison between both synthetic T2-
w contrasts, the ground truth and the input
images can be seen in Figure 2. The output
of our method should be distinguishably more
accurate, which is also numerically measurable
through the mean squared error: our method
outperforms MIMECS on the validation dataset
(the ten last patients), even after training for
only one epoch (Figure 3).

4.1 Numerical comparison

The performance of two of the networks (base
model and deep) was numerically assessed,
after 60 epochs of training, as well as that
of MIMECS, on the validation data (ten last
patients). For this, three metrics were used:
the mean absolute error, the mean squared
error, and the signal-to-noise ratio. This last
metric has the advantage of not being scale-
dependent: if the intensity of all pixels is dou-
bled, both in the synthetic image, and the
ground truth image, the signal-to-noise ratio

will not change, whereas the mean absolute
error will double, and the mean squared error
will quadruple. This makes it a viable basis for
comparison, even when the intensities are not
normalized to the same values. The signal-to-
noise ratio of an image is given by the follow-
ing formula, where mean is the mean intensity
value.

SNR = 10× log10(
mean2

mse
) (10)

All metrics are calculated only on the voxels
of the image that are part of the brain, that are
identified by a non-null intensity values.

TABLE 1
Numerical comparison of two neural networks and MIMECS on

ten patients (all values averages)

Method MAE MSE SNR
Base 0.02943 0.002585 16.55
Deep 0.02724 0.002349 16.80
MIMECS 0.04506 0.007612 11.65

It is important to note that, since the mean
squared error was used as loss function, the
neural networks will favor reducing it, and
there is an inherent bias in using this metric
(or the signal to noise ratio that is based on it)
as a basis for comparison with other methods.
It is however linked with perceptual quality,
and only diverges significantly from the prior
in some cases where, for example, two images
differ only through their shading, leading to
a large mean squared error, even though both
have great structural similarity.

4.2 Error localization

To make sure no such effect is biasing the
results, an error map was computed between
the output of the base neural network and the
ground truth: every voxel has for intensity the
absolute difference between its intensities in
both images. The same error map was com-
puted between the MIMECS synthetic image
and the ground truth, both using the same scale
between 0 and 0.2 (Figure 15). As a reminder,
the intensity of the ground truth is normalized
for the mean to be of 1/3.
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Fig. 15. Absolute difference between output and ground truth. a)
MIMECS, b) Base neural network

These maps show that the error localiza-
tion is similar for both methods, with a large
part concentrated around the ventricles. Our
method however seems to be more accurate
on every part of the brain than MIMECS, and
also shows noticeably less errors around the
gray matter / white matter frontier (nearly not
apparent in the second error map, contrary to
the first).

This indicates that the better scores achieved
by the neural networks are gained (at least
partially) through more visually accurate image
synthesis, and not only some measurement bias
that favors them. It also shows that there is
still significant room for improvement, since a
large part of the error is not only due to noise
(in which case the error map would be more
uniform), but concentrated in parts where the
network fails to transform the contrasts with
high precision.

4.3 Running time

Even though training the neural network may
take a significant amount of time (nearly four-
teen hours to train the base model for 60
epochs), it is highly efficient when synthesiz-
ing contrasts from input: ten contrasts are pro-
cessed in only a couple of minutes, putting the
running time at a dozen seconds per image.
On the other hand, example based approaches
don’t require any separate training phase, but
are significantly slower when it comes to syn-
thesizing a new contrast: it takes MIMECS over
an hour on our hardware to process one single

input contrast. This is several orders of magni-
tude longer than the base network.

It is also worth noting that in our experi-
ments, even one epoch of training was suffi-
cient to outperform MIMECS, which means one
could theoretically train and use the network in
less time than it takes to synthesize a contrast
using MIMECS, while producing better output.
This should however be nuanced by the fact
that the neural network was running on a pow-
erful GPU, thanks to deep learning libraries
that implemented efficient parallelized comput-
ing for neural networks, whereas MIMECS was
only running on the CPU.

5 CONCLUSION

The results indicate that deep learning, and
in particular convolutional auto-encoders, are
very well suited for the problem of MRI con-
trast synthesis. Many recently developed tech-
niques in this field have also contributed to
making the Neural Network perform better:
the use of Rectified Linear Units [13], ADAM
optimizer [12], an adapted initialization scheme
[9] and Batch Normalization [11], which also
makes us believe that future advances in the
general field of Deep Learning will likely fur-
ther improve upon the results we were able to
achieve.

The main limitation of this technique is the
requirement of having a large training dataset,
but this can probably be partially overcome
through additional work on the network or by
developing a more efficient training scheme,
that takes advantage of the robustness of un-
supervised pre-training.

This method also seems more apt to bene-
fit from increases in computing power, allow-
ing for both deeper and wider networks, than
example-based approaches, that often converge
as of a given processing time, and require mod-
ifications to the method to provide significant
improvement in results. As has been the case
for other computer vision problems, we further
conjecture that more specialized and complex
architectures may perform better on this prob-
lem.
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Finally, with the advantages of better perfor-
mance and running time, at least on our data,
and with more prospects for improvement,
deep learning seems like the best method for
modality synthesis. These improvements upon
current state-of-the-art methods may make the
use of synthetic contrasts more widespread, as
it becomes an increasingly viable replacement
for acquired MRI data. The effectiveness of
synthetic data produced through this method
for common medical applications (e.g. inter-
modality analysis) is definitely a problem wor-
thy of further investigation.
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APPENDIX

I mainly worked alone on the contrast syn-
thesis problem. The data (two registered con-
trasts for all 100 patients as well as the brain-
masks) were provided by my supervisor. An-
other PhD student of my supervisor (Chi-Hieu
Pham) worked on MRI image super-resolution,
and also implemented a network for contrast
synthesis as part of his research. Other PhD
students that were in the same room as I,
worked on different medical imaging problems
(registration problems for example). Chi-Hieu
helped me learn to use some of the software
to visualize the data (3D mri images viewed
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with ITK-snap). I also attended two reading
group sessions in which articles about machine
learning were discussed (after reading them
independently), and several oral presentations
: four given by candidates for a new position
about the research they had accomplished, on
information processing, and one given by a
PhD student for a conference, about his work
on dynamic ankle registration. This gave me a
small overview of the numerous problems in
both machine learning and medical imaging.
Discussions over lunch and coffee breaks were
also an opportunity to learn more about what is
done in these fields, and I received several help-
ful suggestions and article recommendations.
The impression I got of the academic world
during this internship is very positive. Even
though I was already familiar with it (bot my
parents are scientists), I enjoyed the freedom to
explore a research area and tackle problems as
I deemed fit, while always being able to rely on
the help of my supervisor or others scientists or
students when needed. This also contributed to
a very friendly and constructive atmosphere in
the laboratory.


