
Pigeonhole Subset-Sum and related problems

KLINGELHOEFER Felix

August 2018

1 Introduction
During my internship, I did some bibliographic work on quantum computing (in par-
ticular quantum walks), but didn’t make any contribution, and only acquired a limited
understanding because the field is very complex. Therefore, I decided to focus my in-
ternship report on another problem I worked on, and in which I was able to find new
state-of-the-art performance algorithms: the Pigeonhole Subset-Sum problem, and
some variations around it.

2 The Pigeonhole Subset-Sum Problem

2.1 The Subset-Sum Problem

We first recall the usual Subset-Sum decision problem.

Subset-Sum
Input: A set {a1, . . . , an} of positive integers, a target number t.
Output: Is there a subset S ⊂ {1, . . . , n} such that∑

i∈S
ai = t ?

Most of the results about Subset-Sum still hold if we are working with a modulus.
We call this variant Modular Subset-Sum.

Modular Subset-Sum
Input: A set {a1, . . . , an} of positive integers, a target number t and a modulus p.
Output: Is there a subset S ⊂ {1, . . . , n} such that∑

i∈S
ai ≡ t mod p ?

Both the Subset-Sum and the Modular Subset-Sum problems can be solved
exactly in time Õ

(
2n/2

)
on a classical computer (the Õ notation ignores polynomial

1

factors in n). This can be done as follows. For each S ⊂ {1, . . . , n} denote Σ(S) =∑
i∈S ai. Compute first the sorted list of all the Σ(S) for S ⊂ {1, . . . , n/2} (in time

Õ
(
2n/2

)
). Then, compute Σ(S) for each S ⊂ {n/2 + 1, . . . , n} and see if t−Σ(S) occurs

in the first list. This is a Õ
(
2n/2

)
algorithm for Subset-Sum.

On a quantum computer, the previous result can be improved to Õ
(
2n/3

)
using Grover

search. First, compute the sorted list of all the Σ(S) for S ⊂ {1, . . . , n/3} (in time
Õ
(
2n/3

)
). Then, we want to find S ⊂ {n/3 + 1, . . . , n} such that t− Σ(S) occurs in the

first list. Given S ⊂ {n/3+1, . . . , n}, the last condition can be checked efficiently in time
O (n) (the list is sorted). Consequently, using Grover search on the set {n/3 + 1, . . . , n}
of size O

(
22n/3

)
, we can solve Subset-Sum in time Õ

(√
22n/3

)
= Õ

(
2n/3

)
.

There are more space-efficient variants of these algorithms but the asymptotic time
complexities are the best known so far for exact algorithms. Moreover, finding explicitly c
subsets that sum to the given target number t can be done at an extra cost Õ (c) (if such
subsets exist). See [BJLM13] for a review of these results, plus some heuristic algorithms.

2.2 The class PPP

Here we are interested in a variant of the Subset-Sum problem, which we call Pigeon-
hole Subset-Sum.

Pigeonhole Subset-Sum
Input: A set {a1, . . . , an} of positive integers such that

∑n
i=1 ai < 2n − 1.

Output: Two distinct subsets S1, S2 ⊂ {1, . . . , n} such that∑
i∈S1

ai =
∑
i∈S2

ai

There are 2n subsets S ⊂ {1, . . . , n}. Since they all verify 0 ≤
∑

i∈S ai ≤ 2n − 2
there must exist two distinct subsets S1, S2 that sum to the same value, according to the
pigeonhole principle.

This is one of the most famous problems of the complexity class PPP defined by
Papadimitriou in [Pap94]. PPP stands for Pigeonhole Principle Problem, which is the
algorithmic class of problems that can be reduced to the Pigeonhole Circuit problem,
for which there is both a weak and a strong version. THe first defines the class PPP.

Strong Pigeonhole Circuit
Input: A boolean circuit with n input bits and n output bits.
Output: Two distinct boolean vectors that map to the same output, or an input vector
that maps to 0.

and the weak version defines the class weak-PPP.

Weak Pigeonhole Circuit
Input: A boolean circuit with n input bits and n− 1 output bits.

2

Output: Two distinct boolean vectors that map to the same output.

The class PPP is a sub-class of True Functional Nondeterministic Polynomial, or
TFNP, which is the class of problems that can be solved in polynomial time by a nonde-
terministic Turing machine, and for which a solution is guaranteed for every input, and
at most polynomially larger. TFNP is naturally a subclass of NP, as its name indicates.

At this time, only two somewhat natural problems have been shown to be PPP-
complete: BLICHFELDT and constrained-Short Integer Solution (cSIS), in [KS18]. We
will not study these problems so we won’t define them mathematically, but BLICH-
FELDT is searching for a point or a difference of two points that belong to a lattice,
in a set of cardinality greater or equal to the volume of a lattice, in Zn, while cSIS is a
generalization of the Short Integer Solution problem.

During my internship, my advisor found a reduction from one version of the Pi-
geonhole Subset-Sum problems (Pigeonhole Abelian Group Subset-Sum) to
the Pigeonhole Circuit problem, which would make it the third (and probably most
natural) complete problem of the PPP class, which highlights its interest.

2.3 Related Problems

This is one of the main problems of our study:

Pigeonhole Abelian Group Subset-Sum
Input: A set {a1, . . . , an} of positive integers, an Abelian group G such that |G| < 2n−1.
Output: Two distinct subsets S1, S2 ⊂ {1, . . . , n} such that∑

i∈S1

ai =
∑
i∈S2

ai

It is a generalization of the modular version of the pigeonhole subset sum problem:

Pigeonhole Modular Subset-Sum
Input: A set {a1, . . . , an} of positive integers, a modulus p such that p < 2n − 1.
Output: Two distinct subsets S1, S2 ⊂ {1, . . . , n} such that∑

i∈S1

ai ≡
∑
i∈S2

ai mod p

We will also study this one, because it allows us to show the ideas behind the gen-
eralization methods used for going from Pigeonhole Subset-Sum to Pigeonhole
Abelian Group Subset-Sum while having much easier notations.

Our results

3

• a Õ
(
2n/2

)
classical algorithm for Pigeonhole Subset-Sum (Section 3.1)

• a Õ
(
2n/2

)
classical algorithm for Pigeonhole Modular Subset-Sum (Section

3.3)

• a Õ
(
2n/2

)
classical algorithm for Pigeonhole Abelian Group Subset-Sum

(Section 3.4)

• a Õ
(
22n/5

)
quantum algorithm for Pigeonhole Subset-Sum (Section 3.5)

3 Algorithms for Pigeonhole Subset-Sum

The Pigeonhole Subset-Sum problem can be solved naively in time Õ (2n) without
making use of the promise

∑n
i=1 ai < 2n − 1. Indeed, it suffices to compute the sum of

each of the 2n possible subsets of {a1, . . . , an}, sort these values, and search for a collision
in the sorted list. Quantumly, this can be improved to Õ

(
22n/3

)
by using the collision

finding algorithm of Ambainis [Amb07].
Here we describe a non-trivial Õ

(
2n/2

)
classical algorithm for solving Pigeonhole

Subset-Sum (using the promise
∑n

i=1 ai < 2n − 1). We then show how to adapt it to
Pigeonhole Modular Subset-Sum and Pigeonhole Abelian Group Subset-
Sum. The first proof was made by Antoine Joux and Yassine Hamoudi, but we will show
it since it serves as a basis for our next algorithms. We then improve these results in
the quantum setting with a Õ

(
22n/5

)
quantum algorithm for Pigeonhole Subset-Sum

and some instances of Pigeonhole Modular Subset-Sum.

3.1 A Õ
(
2n/2

)
classical algorithm for Pigeonhole Subset-Sum

We prove the following result:

Theorem 1. There is a classical algorithm for the Pigeonhole Subset-Sum problem
that runs in time Õ

(
2n/2

)
.

Proof. Given an input {a1, . . . , an} of Pigeonhole Subset-Sum, for each S ⊂ {1, . . . , n}
we let Σ(S) be the sum

∑
i∈S ai. Our goal is to find two distinct subsets S1, S2 of {1, . . . , n}

such that Σ(S1) = Σ(S2).
We denote by [0], [1], . . . [2n/2 − 1] the congruence classes modulo 2n/2. Each of these

classes contains exactly 2n/2 numbers between 0 and 2n−2, except the last class [2n/2−1]
that has only 2n/2 − 1 numbers. Since all the 2n subsets of S ⊂ {a1, . . . , an} have a sum
Σ(S) between 0 and 2n − 2 there are two possible cases:

1. either there is some class [σ] such that Σ(S) ∈ [σ] for strictly more than 2n/2 subsets
S ⊂ {1, . . . , n}

2. or there are 2n/2 subsets S ⊂ {1, . . . , n} such that Σ(S) ∈ [2n/2 − 1]

Denote by [σ] a class that verifies one of these two points. By definition, there are
strictly more subsets S such that Σ(S) ∈ [σ] than the number of elements between 0 and

4

2n − 2 that belong to [σ]. However, for all S ⊂ {1, . . . , n} we have Σ(S) ≤ 2n − 2. Thus,
there must be two subsets S1, S2 such that Σ(S1),Σ(S2) ∈ [σ] and Σ(S1) = Σ(S2).

Once we know such a value σ, we can make a call to Modular Subset-Sum to
efficiently find a collision Σ(S1) = Σ(S2) such that Σ(S1),Σ(S2) ∈ [σ]. Indeed, as ex-
plained in introduction, it is possible to find explicitly c subsets S that verifies Σ(S) ≡ σ

mod 2n/2 at a total cost Õ
(
2n/2 + c

)
. Thus, if σ < 2n/2− 1 and we know 2n/2 + 1 subsets

S that sum to σ modulo 2n/2 then we are guaranteed to find a collision among them. If
σ = 2n/2 − 1 then it suffices to know 2n/2 subsets that sum to σ modulo 2n/2 to find a
collision.

It remains to show how to find σ efficiently. We cannot compute Σ(S) mod 2n/2

for all S separately since there are 2n such subsets. Instead, we are going to build an
(n+ 1)× 2n/2 array T that has the following property:

T [i, j] =
∣∣{S ⊂ {1, . . . , i} : Σ(S) ≡ j mod 2n/2

}∣∣
Given such an array, we can find in the last row a value σ such that T [n, σ] > 2n/2,

or T [n, 2n/2 − 1] = 2n/2.
Finally, we show how to build the array T in time Õ

(
2n/2

)
with dynamic program-

ming. First, we have T [0, 0] = 1 (the empty set sums to zero) and T [0, j] = 0 for
j > 0. Then, remark that if S ⊂ {1, . . . , i + 1} verifies Σ(S) ≡ j mod 2n/2, then
either S ⊂ {1, . . . , i}, or there exists S ′ ⊂ {1, . . . , i} such that S = S ′ ∪ {ai+1} and
Σ(S ′) ≡ j − ai+1 mod 2n/2. Thus, knowing ai+1 and T [i, j] for all j ∈ {0, . . . , 2n/2 − 1},
we can compute the next values T [i+ 1, j] as follows:

T [i+ 1, j] = T [i, j] + T [i, j − ai+1 mod 2n/2]

Consequently, the (i+ 1)th row of T can be deduced from the ith row and ai+1 in time
Õ
(
2n/2

)
. The total computation time is Õ

(
2n/2

)
.

Remark 2. This algorithm can be extended to Pigeonhole Modular Subset-Sum in
the case where the modulus p is the factor of two numbers: p = p1∗p2. Indeed, any number
congruent to σ mod p1 can only have p2 different values mod p: {σ+k∗p1 : k ∈ [0, p2−1]},
so we can use p1 as modulus in the algorithm instead of 2n/2. The complexity is then
Õ (p1 + p2), and in particular if p1 ≈ p2 ≈ 2n/2, the complexity is Õ

(
2n/2

)
.

3.2 A Õ
(
3n/2

)
classical algorithm for all pigeonhole problems

While it is no longer our best result for any problem, this was the first algorithm (better
than the naive one) we found that worked for all cases of the Pigeonhole Modular
Subset-Sum and Pigeonhole Abelian Group Subset-Sum problems.

Theorem 3. There is a classical algorithm for the Pigeonhole Modular Subset-
Sum and Pigeonhole Abelian Group Subset-Sum problems that runs in time
Õ
(
3n/2

)
.

Proof. This algorithm is based on the classical algorithm for the Subset-Sum problem.
Given an input consisting of n numbers, we partition them into two sets of (roughly) n/2
elements, that we call S1 and S2. We then explicitly determine the sets T1 = {

∑
x∈S1

x ∗ i :

5

i ∈ {−1; 0; 1}} and T2 = {
∑
x∈S2

x ∗ i : i ∈ {−1; 0; 1}}, and order them. We can then find a

collision between the values in T1 and those in T2 that will give us a solution. Indeed, if
two subsets that are equal can also be seen as one assignment of {−1; 0; 1} as multipliers
to each value, that equals 0: 1 if the element is in the first subset, −1 if it is in the second,
and 0 if it is in neither. We need to point out that there is necessarily a disjoint solution,
since there is a solution, and if a same value is in two distinct but equal subsets, then
taking that value out of both they will remain distinct and equal.

The complexity of this algorithm is Õ
(
3n/2

)
because that is the size of both sets we

compute. Ordering them only adds a polynomial factor (logarithmic in 3n/2), and finding
a collision is then done in polynomial time of the lists’ length.

This algorithm works for all versions of the Pigeonhole Subset-Sum problem be-
cause we only compare the final values when looking for a collision. We just need to add
an ordering on the Abelian group version, but that does not make it more difficult.

Note that this algorithm does not use the promise:
∑
i∈S1

ai ≡
∑
i∈S2

ai mod p. Therefore,

it would work for a more general Equal Subsets problem where no solution is guar-
anteed to exist. This is probably what makes it less efficient than our other algorithms,
that all exploit the promise in order to achieve better results.

Finally, this algorithm can easily be extended to a quantum setting, as for the normal
Subset-Sum problem, by computing one set for the n/3 and ordering it, and then
searching among the second set that has assignments for the other 2n/3 elements, for
an element that has its opposite in the ordered list (can be checked in polynomial time).
This gives us a quantum complexity of Õ

(
3n/3

)
, which is still worse than the classical

complexity of Õ
(
2n/2

)
we manage to achieve for all the problems.

3.3 Adaptation to Pigeonhole Modular Subset-Sum

We will adapt the previous algorithm to prove the following theorem:

Theorem 4. There is a classical algorithm for the Pigeonhole Modular Subset-
Sum problem that runs in time Õ

(
2n/2

)
.

Proof. Our goal is the same as previously, except we only need to find two distinct subsets
S1, S2 of {1, . . . , n} such that Σ(S1) ≡ Σ(S2) mod p.

In order to do so, we decide to compute an array giving the number of sets whose
modular sum is in each of the (at most 2n/2) intervals of the form [2n/2∗ i, 2n/2∗(i+1)−1]
for i ∈ [0, bp/2n/2c]. These intervals are of size 2n/2, except for the last one which is of
size at most 2n/2 if there are 2n/2 intervals. More precisely, our goal is to get:

A[i, j] =

∣∣∣∣{S ⊂ {1, . . . , i} : b
∑
k∈S

ak/2
n/2c ≡ j mod p

}∣∣∣∣
Given such an array, we could find in the last row a value σ such that T [n, σ] > 2n/2, or

T [n, 2n/2 − 1] = 2n/2, which would guarantee us a solution by finding a collision amongst
the elements of that set, because of the size of the interval of values that they can take.

However, such an array can not be easily computed, so instead we build a slightly
different array:

6

A
1
-

A
n

A
n+1

-

A
2n

... A
2^(n-1)-n+1

- A
2^(n-1)

A
2^(n-1)+1

-

A
n2^(n)+n

... A
2^(n)-n+1

-

A
2^(n)

T
1
-

T
n

T
n+1

-

T
2n

... T
2 (̂n-1)-n+1

- T
2^(n-1)

T
2^(n-1)+1

-

T
n2^(n)+n

... T
2^(n)-n+1

-

T
2^(n)

... ...
D
n D

2^(n-1)

Figure 1: Relation between the different arrays used in our proof. The red arrows show
where the elements from one group of cells go.The blue bars show what we need to
determine in order to be able to do a dichotomy search on the larger side of the array A.

T [i, j] =

∣∣∣∣{S ⊂ {1, . . . , i} :
∑
k∈S
bak/2n/2c ≡ j mod p

}∣∣∣∣
This array can be constructed the same way as the one in the previous subsection.

We now observe that σ ∈ T [n, j] =⇒ ∃k ∈ [0, n− 1], σ ∈ T [n, j + k]. Indeed, by adding
rounded down divisions of elements by 2n/2, the rounded down division of the sum can
only be off by at most the number of elements minus one. We will use this fact to find
the right value of sigma for the array A by doing a dichotomy search on the array T,
based on the following equality:∑y

j=xA[n, j] =
∑y

j=x T [n, j] +
∑x−1

j=x−nDx[n, j]−
∑y

j=y−nDy+1[n, j]

Where we define:

Dx[i, j] = {S ⊂ {1, . . . , i} : S ∈ T [i, j];∃k ∈ {x, ..., x+ n}, S ∈ A[i, k]}

Which basically comes down to saying that if we define arbitrary boundaries x and y,
the number of elements between them in A is equal to the number of elements between
them in T , plus the number of elements crossing the boundary x between T and A minus
those crossing y between T and A. Since the elements can only "advance" by at most n−1
cells between T and A, we can compute those border crossings by explicitly computing
all the elements of 2 ∗ n cells of T thanks to the Subset-Sum algorithm.

Once we created the array T as in Section 2.1, we can calculate
∑2(n/2)−1−1

0 A[n, j].
When that is done, since there are a total of 2n sets that we just split into two cat-
egories, we know that either

∑2(n/2)−1−1
0 A[n, j] > 2n/2/2 in which case we can find

σ ∈ {0, ..., 2(n/2)−1 − 1} such that A[n, σ] > 2n/2 or
∑2n/2−1

2(n/2)−1 A[n, j] > (2n/2/2) − 1
and then we can find σ ∈ {2(n/2)−1, ..., 2n/2− 1} with A[n, σ] > 2n/2. This is the first step
of the dichotomy, which we then need to repeat log2 2n/2 = n/2 times in order to find the
final σ such that A[n, σ] > 2n/2 (or A[n, 2n/2 − 1] > 2n/2 − 1).

7

We now only need to find a collision in the sets of A[n, σ] which as previously is done
in Õ

(
2n/2

)
. To sum everything up, we start by computing T in time Õ

(
2n/2

)
, then make

n/2 dichotomy steps which each have complexity Õ
(
2n/2

)
, before finding a collision in

time Õ
(
2n/2

)
. This means the algorithm runs in time Õ

(
2n/2

)
.

Remark 5. If at some point during the calculations we find a T [n, j] > n ∗ 2n/2, we can
directly determine n ∗ 2n/2 + 1 elements of T [n, j] and we will be guaranteed to find a
collision, because they all lie in some A[n, k] with k ∈ {j, ..., j + n}. This allows us to
avoid computing all the elements of a T[n,j] which would be asymptotically larger than
2n/2 and lead to an a worse complexity.

3.4 Extension to Pigeonhole Abelian Group Subset-Sum

Using similar ideas to the previous subsection, we prove the following result:

Theorem 6. There is a classical algorithm for the Pigeonhole Abelian Group
Subset-Sum problem that runs in time Õ

(
2n/2

)
.

Proof. Given a finitely generated abelian group G, the primary decomposition formula-
tion states that G is isomorphic to a direct sum of primary cyclic groups. Since G is
finite, let us consider G as Zp1 ⊕ Zp2 ⊕ ...⊕ Zpk . We then find l such that

∏l−1
i=1 pi < 2n/2

and
∏l

i=1 pi > 2n/2 (if there is no such l, there are at most 2n/2 elements in G and we can
solve the instance by computing the value of all subsets and finding a collision). For ease
of notation, we will define the following:

q =
∏l−1

i=1 pi

In the following aki will denote the value of ai on Zqk .
The general idea is the same as for the modular version of the problem, but it is only

done on one of the groups in the direct sum, which we have called Zpk . For the other
groups, the exact value is taken in the array, or it isn’t considered until the collision is
determined in one of the cells of the array. We will detail the operations with the correct
formalism, but the algorithm should be understood as performing the same tasks as the
previous one, but only on Zpl .

As previously, we will have two arrays: T which we will compute, and A which gives
us a collision if one cell has more than 2n/2 elements:

T [i, j] =∣∣∣∣{S ⊂ {1, . . . , i} :
∑l−1

m=1[(
∑
k∈S

amk) ∗ 2n/2

q
∗
∏m−1

m′=1 pm′] + (
∑
k∈S
balk ∗ q/2n/2c mod pl ∗ q/2n/2) = j

}∣∣∣∣
A[i, j] =∣∣∣∣{S ⊂ {1, . . . , i} :

∑l−1
m=1[(

∑
k∈S

amk) ∗ 2n/2

q
∗
∏m−1

m′=1 pm′] + (b
∑
k∈S

alk ∗ q/2n/2c mod pl ∗ q/2n/2) = j

}∣∣∣∣

8

As previously, we will not compute all of A, but instead focus on finding the relevant
sigma by dichotomy. Before doing so however, we will restrict the interval we are working
on for j from {0, ..., 2n/2 − 1} to {b, ..., b + 2n/2/p − 1} with b some multiple of 2n/2/p

such that
∑b+2n/2/p−1

j=b T [n, j] >= p ∗ 2n. This can be done because
∑b+2n/2/p−1

j=b T [n, j] =∑b+2n/2/p−1
j=b A[n, j], which is explained by the fact that the computations are exact on

Zq1⊕Zq2⊕...⊕Zql−1
. In what follows, additions and subtractions on j must be understood

mod 2n/2/p in the interval {b, ..., b+ 2n/2/p− 1}.
It still holds that for a given S we have

∑
k∈S
bak ∗ p/2n/2c = j, then b

∑
k∈S

ak ∗ p/2n/2c ∈

{j, . . . , j + n}. We use this fact to establish the following rule that serves as the basis of
our dichotomy:∑y

j=xA[n, j] =
∑y

j=x T [n, j] +
∑x−1

j=x−nDx[n, j]−
∑y

j=y−nDy+1[n, j]

Where we define:

Dx[i, j] = {S ⊂ {1, . . . , i} : S ∈ T [i, j];∃k ∈ {x, ..., x+ n}, S ∈ A[i, k]}

Dx[i, j] can be computed in time Õ
(
2n/2

)
since it suffices to find all the sets in T[i,j]

which can be done in the same way as previously, and then sum their elements to decide
whether they are in Dx[i, j] or not.

We can now do the dichotomy as previously, int he interval {b, ..., b+ 2n/2/p− 1}.
Once that is done, it suffices to compute explicitly A[n, σ] in order to find a collision.

The complexity is the same as for the modular version because the same operations are
done, so it is Õ

(
2n/2

)
.

Remark 7. If at some point during the calculations we find a T [n, j] > n ∗ 2n/2, we can
directly determine n ∗ 2n/2 + 1 elements of T [n, j] and we will be guaranteed to find a
collision, because they all lie in some A[n, k] with k ∈ {j, ..., j + n}. This allows us to
avoid computing all the elements of a T[n,j] which would be asymptotically much larger
than 2n/2 and lead to an a worse complexity.

3.5 A Õ
(
22n/5

)
quantum algorithm for Pigeonhole Subset-Sum

We prove the following result:

Theorem 8. There is a quantum algorithm for the Pigeonhole Subset-Sum problem
that runs in time Õ

(
22n/5

)
.

Proof. We can compute in time Õ
(
22n/5

)
the same array T as in Section 3.1, except we

use modulus 22n/5 instead of modulus 2n/2. It will give us a value σ ∈ {0, . . . , 22n/5 − 1}
such that there exist S1, S2 ⊂ {1, . . . , n} with Σ(S1) ≡ Σ(S2) ≡ σ mod 22n/5 and Σ(S1) =
Σ(S2). However, in the worst case, we need now to enumerate 23n/5 + 1 subsets S that
sum to σ modulo 22n/5 before having a collision.

We would like to apply Ambainis’s collision finding algorithm [Amb07] on these≈ 23n/5

elements, so as to find a collision Σ(S1) = Σ(S2) in time Õ
((

23n/5
)2/3
)

= Õ
(
22n/5

)
. How-

ever, we have to ensure before that the cost of each query of the collision finding algorithm

9

is small. In other words, if we denote Ωσ =
{
S ⊂ {1, . . . , n} : Σ(S) ≡ σ mod 22n/5

}
={

S1, . . . , S|Ωσ |
}
, we want to find an algorithm that given I ∈ {1, . . . , |Ωσ|} returns SI in

(say) polynomial time. If we make calls to Modular Subset-Sum, as in the proof of
Theorem 1, it would not be efficient (finding one element in Ωσ with this method has
cost Õ

(
2n/3

)
on a quantum computer). Instead, we are going to reuse the array T and

"uncompute" the paths that led to T [n, σ] in order to find the elements of Ωσ. This is
provided by Lemma 10 below.

Definition 9. Given {a1, . . . , an}, we define a (lexicographic) total order≺ over {1, . . . , n}
as follows: for all S1 6= S2 ⊆ {1, . . . , n}, we have S1 ≺ S2 if and only if max{i : i ∈
(S1 ∪ S2)\(S1 ∩ S2)} ∈ S2.

Lemma 10. Denote Ωσ =
{
S ⊂ {1, . . . , n} : Σ(S) ≡ σ mod 22n/5

}
=
{
S1, . . . , S|Ωσ |

}
where S1 ≺ · · · ≺ S|Ωσ |. Given the array T computed in the proof of Theorem 12, and
any I ∈ {1, . . . , |Ωσ|}, we can compute SI in time O (n).

Proof. Starting from T [n, σ] (that contains the total number of S ⊂ {1, . . . , n} that
sum to σ modulo 22n/5) and S̄ = ∅, we are going to reconstruct SI by going backward
(i = n− 1, . . . , 0) in T . At each step, we will examine two elements in the i-th row of T
and decide if we include ai in S̄ or not. At the end, we have S̄ = SI . We describe the
first step of the reconstruction:

1. Notice that:

• T [n− 1, σ] = |{S ∈ Ωσ : an /∈ S}| and {S ∈ Ωσ : an /∈ S} = {S1, . . . , ST [n−1,σ]}
• T [n− 1, (σ − an mod 22n/5)] = |{S ∈ Ωσ : an ∈ S}| and {S ∈ Ωσ : an ∈ S} =
{ST [n−1,σ]+1, . . . , S|Ωσ |}

2. If I ≤ T [n− 1, σ] then keep S̄ unchanged, and proceed to position (n− 1, σ) in T

3. If I > T [n − 1, σ] then set S̄ = S̄ ∪ {an}, set I = I − T [n − 1, σ], and proceed to
position (n− 1, (σ − an mod 22n/5)) in T

According to the definition of the ≺ order, this first step will correctly decide if an is
in SI or not. The change in the value of I is required for the next iterations (basically,
we have removed from I the number of elements in Ωσ that are ≺ SI and can no longer
appear in the path we took in T). The whole algorithm is described below.

10

Input: T , σ, I
Output: SI
j = σ
S̄ = ∅
for i = n, . . . , 1 do

if I ≤ T [i− 1, j] then
Do nothing

else
S̄ = S̄ ∪ {ai}
I = I − T [i− 1, j]
j = j − ai mod 22n/5

Return SI

The previous algorithm can be easily adapted to the Pigeonhole Modular Subset-
Sum problem:

Theorem 11. Given two numbers p1, p2, the Pigeonhole Modular Subset-Sum
problem with modulus p = p1p2 < 2n − 1 can be solved in time Õ

(
p1 + (p2)2/3

)
on a

quantum computer. In particular, if p1 = Õ
(
22n/5

)
and p2 = Õ

(
23n/5

)
this is a Õ

(
22n/5

)
algorithm.

Proof. We use the same algorithm as for Pigeonhole Subset-Sum. Indeed, if p1|p, then
there are at most p2 = p/p1 possible values for an element congruent to a given number
modulus p1. So we simply fill the array using p1 as the modulus, and then find a collision
among the cell with the most elements using the Ambainis collision algorithm.

3.6 A Õ ((4/3)n) classical probabilistic algorithm for well-distributed
Pigeonhole Subset-Sum and related problems

Since every pair of distinct and disjointed subsets of the input set can be matched uniquely
to an assignment of {−1; 0; 1} multipliers to each input element, there are a total of 3n

elements such pairs. Since every such pair has a total sum (sum of the elements in
one set minus those in the other) in the integer interval [−2n, 2n] (this comes from the
promise) in the Pigeonhole Subset-Sum problem, we could expect that in a randomly
distributed instance, roughly 3n/2n = (3/2)n of these to be 0. This means that making
the assumption of having (3/2)n pairs of equal, distinct and disjointed sets comes down
to saying that the instance is well distributed (uniformly would suffice, for example).

We therefore prove the following result:

Theorem 12. There is a probabilistic algorithm for the Pigeonhole Subset-Sum
problem that runs in expected time Õ ((4/3)n), given the assumption that there are ap-
proximately (3/2)n pairs of equal, distinct and disjointed sets.

Proof. We start by randomly partitioning the set of inputs into two sets S1 and S2. Our
main argument is that with constant probability, there is a solution such that its sum
with only the elements of S1 (which must be equal to the opposite of its sum on the

11

elements of S2) is between −(4/3)n and (4/3)n. This is justified by the random nature of
our partitioning, which gives a random value to the value of each solution on S1. With
a random value on S1 that falls in the interval [−2n, 2n], each pair of distinct, disjointed
and equal sets has a probability of (4/3)n/2n) = (2/3)n of falling within [−(4/3)n, (4/3)n].
Given that there are approximately (3/2)n pairs of equal, distinct and disjointed sets, we
can expect roughly one to fall in the desired interval, which means there is a constant
probability of finding a solution with sum on S1 within [−(4/3)n, (4/3)n].

We will use the argument above by computing all the subsets of S1 and S2 with value
in [−2n, 2n]. In order to do so, we use a variant of the algorithm explained in 3.2. For
both sets S1 and S2, we start by dividing them in two, and then compute the ordered list
of sums on each half. Then, instead of finding collisions between both half-sets, we use
the same method to find all value assignments with sum in [−(4/3)n, (4/3)n]. This has
a complexity of Õ

(
(4/3)n + 3n/4

)
= Õ ((4/3)n) because each list has length 3n/4, but we

might take up to Õ ((4/3)n) values (if there are more than 2∗ (4/3)n, we can directly find
a solution and need not look at the remaining assignments).

4 Open problems
Here are some open problems about Pigeonhole Subset-Sum:

1. Find a Õ
(
2n/3

)
quantum algorithm for Pigeonhole Subset-Sum (using Grover

search?).

2. Find a Õ
(
22n/5

)
quantum algorithm for Pigeonhole Modular Subset-Sum or

Pigeonhole Abelian Group Subset-Sum.

3. Find a same-size reduction from Pigeonhole Modular Subset-Sum or Pi-
geonhole Abelian Group Subset-Sum to Pigeonhole Subset-Sum.

4. Find a reduction from Pigeonhole Subset-Sum to Subset-Sum.

Attempt for open problem 1

We can start as in Sections 3.1 and 3.5, but with modulus 2n/3. It will give us a value
σ ∈ {0, . . . , 2n/3 − 1} such that there exist S1, S2 ⊂ {1, . . . , n} with Σ(S1) ≡ Σ(S2) ≡ σ
mod 2n/3 and Σ(S1) = Σ(S2). In the worst case, we need to find 22n/3 + 1 subsets S that
sum to σ modulo 2n/3 before having a collision.

We can look for a quadratic quantum speed-up to perform this last step, as it is the
case for Grover search (which is used to solve Subset-Sum in Õ

(
2n/3

)
). Since we know

that Σ(S1) = Σ(S2) = σ + k · 2n/3 for some 0 ≤ k < 22n/3, then Grover search can find k
with Õ

(√
22n/3

)
= Õ

(
2n/3

)
queries. However, each of these queries corresponds to a call

to Subset-Sum with target t = σ+ k · 2n/3, which requires times Õ
(
2n/3

)
on a quantum

computer. Thus, the total time complexity of this approach is Õ
(
2n/3 · 2n/3

)
= Õ

(
22n/3

)
.

12

Attempt for open problem 2

We can try combining the quantum algorithm for Pigeonhole Subset-Sum with the
generalization methods used in 3.3 and 3.4, but it doesn’t work. The crucial step that
cannot be used in the quantum case is the explicit computation of the cells of the array T
by using the algorithm for Subset-Sum. Indeed, in the quantum setting, each cell of the
array contains 23n/5 elements, and while a collision can be found in complexity 22n/5, it
is not possible to find out how many sets cross the "borders" for our dichotomy between
the two arrays in complexity less than 23n/5.

We also explored the possibility of using a quantum counting algorithm. The best
known method however, developed by Gilles Brassard in [BHT98] has a complexity
Õ
(√
N ∗ c

)
where N is the number of elements and c the final count. In this case,

it would give us Õ
(√

23n/5 ∗ 23n/5
)

= Õ
(
23n/5

)
in the worst case if we want to count the

number of sets crossing a boundary, which is not satisfactory.

Attempt for open problem 3

Finding a size-preserving reduction from Pigeonhole Modular Subset-Sum or Pi-
geonhole Abelian Group Subset-Sum to Pigeonhole Subset-Sum would be
of interest because it would allow us to use the quantum algorithm for Pigeonhole
Subset-Sum on instances of these different problems, and therefore give us a better
quantum complexity for these (and solve problem 2).

Given an instance ({a1, . . . , an}, p) of Pigeonhole Modular Subset-Sum, the
most “natural” reduction to Pigeonhole Subset-Sum would be to consider the input
{a1 mod p, . . . , an mod p, 2p, 4p, . . . , 2lognp}.

Indeed, given S1, S2 ⊂ {1, . . . , n} such that Σ(S1) ≡ Σ(S2) mod p, it must be the
case that

∑
i∈S1

(ai mod p) =
∑

i∈S2
(ai mod p) + kp for −n ≤ k ≤ n. Reciprocally,

if there are S1, S2 ⊂ {1, . . . , n} and S ′1, S
′
2 ⊂ {0, 1, . . . , log n} such that S ′1 ∩ S ′2 = ∅

and
∑

i∈S1
(ai mod p) +

∑
j∈S′1

2jp =
∑

i∈S2
(ai mod p) +

∑
j∈S′2

2jp then we must have
Σ(S1) ≡ Σ(S2) mod p and S1 6= S2.

Unfortunately, the instance {a1 mod p, . . . , an mod p, 2p, 4p, . . . , np} of Pigeon-
hole Subset-Sum contains n + log n + 1 numbers whose total sum can be bounded
above by n(p− 1) + 2np− 1 < 2n+logn+log 3 − 1. This is not the promise required in the
definition of Pigeonhole Subset-Sum (it must be bounded above by 2n+logn+1 − 1
since there are n+ log n+ 1 elements).

Note that this analysis can be refined a little bit, but it doesn’t improve the up-
per bound much. One solution to this problem would be to find one (or many) small
element(s) that could be added to {a1 mod p, . . . , an mod p, 2p, 4p, . . . , np} without in-
creasing the total sum much, and that do not interfere with the solutions.

Adding {(n+1)p, . . . , 2np} does give an instance of Pigeonhole Subset-Sum where
the promise is fulfilled, but the size of the new instance is double that of the original,
which does not allow any algorithmic gains by applying the quantum algorithm.

13

5 Conclusion
The Pigeonhole Subset-Sum problem is an interesting variation of the Subset-Sum
problem that hasn’t garnered much interest yet, but might become more relevant if indeed
proven to be a PPP-complete problem. This allowed us to develop novel algorithms that
improved upon the best known complexities in different settings.

The following table sums up the complexities of our best algorithms for each problem
in every setting. Probabilistic also implies that the distribution assumption holds.

Setting Pigeonhole Subset-Sum Pigeonhole Modular / Abelian Group
Classical Õ

(
2n/2

)
Õ
(
2n/2

)
Quantum Õ

(
22n/5

)
Õ
(
2n/2

)
Probabilistic Õ ((4/3)n) Õ ((4/3)n)

The Pigeonhole Subset-Sum problem provided a lot of interesting algorithmic
challenges for a seemingly simple problem. Making use of the promise seemed essential
since that is what puts it in a sub-class of NP (which intuitively means it is algorith-
mically simpler), but proved to be a difficult task. It seems unlikely that polynomial
algorithms will be developed for this problem, since it would imply that PPP and its
subclass PPAD would all be in P, and there are some well-studied problems in both the
two classes (for example searching for a Nash equilibrium or a three-colored point of the
Sperner lemma) for which no one has found a polynomial time algorithm in decades. It is
also highly improbable that there is a polynomial reduction from Pigeonhole Subset-
Sum to an NP-complete problem, since it would imply NP=co-NP which is widely
conjectured not to be true.

The two other versions of this problem: Pigeonhole Modular Subset-Sum and
Pigeonhole Abelian Group Subset-Sum also provided their own set of challenges,
and at least for the quantum setting, hurdles that we did not manage to overcome yet.
The difficulty was in finding a way to adapt the counting array in order to find information
with which we can exploit the promise. We chose to do this by shifting from a modulus
categorization to a first-bit categorization. Our original algorithm actually also used the
modulus, but it could "shift" between the array we computed and the one that provided
information enabling us to find a solution. We chose to rather use the first bits of the
value because it allowed for easier notations and formalism. The main idea was to correct
the array that is computed and use a dichotomy to find the relevant cell.

Finally, we are hopeful that the quantum result for the classical algorithm can be
expanded to the two other problems, or that a better (Õ

(
2n/3

)
) algorithm is found that

can work for all the problems. Indeed, the Pigeonhole Subset-Sum problem is very
similar to the Subset-Sum problem, and in an "easier" complexity class, so we could
expect to have algorithms with a complexity at least as good as those for Subset-Sum
in all settings.

14

References
[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM

Journal on Computing, 37(1):210–239, 2007.

[BHT98] Gilles Brassard, Peter HØyer, and Alain Tapp. Quantum counting. In Kim G.
Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and
Programming, pages 820–831, Berlin, Heidelberg, 1998. Springer Berlin Hei-
delberg.

[BJLM13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.
Quantum Algorithms for the Subset-Sum Problem, pages 16–33. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[KS18] Giorgos Zirdelis Katerina Sotiraki, Manolis Zampetakis. Ppp-completeness
with connections to cryptography, 2018.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532,
June 1994.

15

	Introduction
	The Pigeonhole Subset-Sum Problem
	The Subset-Sum Problem
	The class PPP
	Related Problems

	Algorithms for Pigeonhole Subset-Sum
	A O"0365O(2n/2) classical algorithm for Pigeonhole Subset-Sum
	A O"0365O(3n/2) classical algorithm for all pigeonhole problems
	Adaptation to Pigeonhole Modular Subset-Sum
	Extension to Pigeonhole Abelian Group Subset-Sum
	A O"0365O(22n/5) quantum algorithm for Pigeonhole Subset-Sum
	A O"0365O((4/3)n) classical probabilistic algorithm for well-distributed Pigeonhole Subset-Sum and related problems

	Open problems
	Conclusion
	References

