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1 Introduction

During my internship, I studied the Synthetic Minority Over-sampling TEchnique (SMOTE),
as well as Metric Learning, in an effort to combine them and design a novel metric learn-
ing method for imbalanced datasets. I worked with a PhD student who was developing a
new Metric Learning method based on the Mahalanobis distance, for imbalanced datasets.
The goal was to use the distance that was learned as an alternative to the Euclidean dis-
tance in the SMOTE algorithm, and try to learn the optimal placement for synthetic
points.

2 The Data Imbalance Problem

In many machine learning tasks, one class is much more represented than another: be it
fraud, fault or disease detection, the class of objects that needs to be detected is often
quite rare. This can spell trouble for many classic machine learning problems: faced with
an overwhelming majority of points belonging to one class, a classifier that is trained to
increase accuracy will tend to predict all points as belonging to that class.

2.1 Algorithmic methods

There are several ways of dealing with the class imbalance problem. First of all, some ma-
chine learning methods are trained to optimize more appropriate measures than accuracy,
which are derived from the confusion matrix.
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We can then define the following measures, by using the number of True Positives
(tp), False Positives (fp), True Negatives (tn) and False Negatives (fn).

tp +in
Accuracy = 1
Y tp+tn+ fp+ fn (1)
t
Precision = P (2)
tp+ fp
lp
Recall = ——— 3
tp+ fn (3)
o Recall ™! + Precision™! ! _o Precision - Recall (4)
e 2 7 Precision + Recall

The F; measure is often used when datasets are imbalanced, because it doesn’t favor
the majority class like Accuracy. Another algorithmic solution to the class imbalance
problem is to give different weights to majority and minority points during training. In
a nutshell, the cost function is adapted so that an error on a minority point is as costly
as many errors on majority class points. This ratio can be adapted to the imbalance in
the data, and the preferred optimization (maximizing precision or recall).

2.2 Sampling methods

If the dataset is very large, a very simple and often very efficient way of dealing with
class imbalance is to undersample the majority class. The most basic undersampling
method is to randomly select a proportion of the majority class points, but this can lead
to important data points being lost. Using clustering methods (such as K-Means) can
usually overcome this risk when enough data is present.

Undersampling is usually the preferred method when the size of the dataset is pro-
hibitive for training the machine learning algorithm, or in order to improve efficiency. In
other cases, oversampling the minority class will lead to greater diversity in the data, so
usually to better results for algorithms trained with it. As for undersampling, the most
basic method is random oversampling: points are randomly selected from the original
minority class and duplicated, until the desired balance is reached. More efficient over-

sampling methods have been developed however, and they are nearly all based on the
Synthetic Minority Oversampling TEchnique (SMOTE)[CBHKO02].

2.3 SMOTE and variants

One of the drawbacks of random oversampling is that points are repeated, which can lead
to a very narrow decision region for the minority class. The idea of SMOTE is to increase
diversity by generating synthetic points that are very likely to belong to the minority
class, but are not yet present in the dataset.

In order to do so, synthetic points are generated by selecting the k nearest same-
class neighbors of every minority point (through euclidean distance), and then randomly
choosing one of them, and adding a new point whose features are all randomly chosen in
between the values of the features of its two parents. This means the point is randomly
placed in the n-dimensional box between the two points it is generated from. Although
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Figure 1: Graphical representation of SMOTE. a: minority points (green) and majority
points (blue) are separated b: for each minority point, its k nearest minority neighbors
are selected (here k=3) c: One of those neighbors is chosen randomly, the synthetic point
is then generated randomly between both points (for each feature)

this is clear in the papers by the original authors, there is some confusion in many derived
methods, as well as in the implementations of some well-known libraries (such as sklearn),
who place the point on the line between both parents (as in Figure 1).

Many methods have improved upon SMOTE, by either selecting points based on cer-
tain conditions (Borderline SMOTE[HWMO5|, or ADASYN[HBGLOS|), or combining it
with different methods (boosting for SMOTEboost [HBGLO§]). Our idea was to com-
bine SMOTE with metric learning, and try to learn the position of the point between its
parents, instead of selecting it randomly.

3 Metric Learning

Metric learning [BHS15, Kull3|, a subfield of representation learning, consists of design-
ing a pairwise function able to measure the dis/similarity between two data points. This
issue is key in machine learning where such metrics are at the core of many algorithms, like
K-nearest neighbors (KNN), SVMs, K-Means, etc. To construct a dis/similarity mea-
sure suitable for a given task, most metric learning algorithms optimize a loss function
which aims at bringing closer examples of the same label while pushing apart exam-
ples of different labels. In practice, metric learning is usually performed with cannot
link/must link constraints—ax and 2’ should be dis/similar [XJRNO03, DKJ*07, WS09,
XNZ08, LZT*14, ZHS16]—or relative constraints—z should be more similar to 2’ than
to «” [SJ04, LJJO8, WS09, ZGX11].

We focused on the family of metric learning algorithms that construct a Mahalanobis
distance dni(z,2') = \/(z — 2/) TM(z — 2') parameterized by a positive semidefinite ma-
trix M. Learning a Mahalanobis distance leads to several nice properties: (i) dyp is
a generalization of the Euclidean distance; (7i) it induces a projection such that the




distance between two points is equivalent to their Euclidean distance after a linear pro-
jection; (717) M can be low rank implying a projection in a lower dimensional space; (iv) it
involves optimization problems that are often convex and thus easy to solve. The most fa-
mous Mahalanobis distance learning algorithms are likely, LMINN (Large Margin Nearest
Neighbor [WS09]) and ITML (Information-Theoretic Metric Learning [DKJ*07]), which
are both designed to improve the accuracy of the K NN classification rule in the latent
space. The principle of LMINN is the following: for each training example, its K near-
est neighbors of the same class (the target neighbors) should be closer than instances of
other classes (the impostors). ITML uses a LogDet regularization and minimizes (resp.
maximizes) the distance between examples of the same (resp. different) class. The loss
functions optimized in LMNN and ITML (and in most pairwise metric learning meth-
ods) tend to favor the majority class as there is no distinction between the constraints
involving examples of the majority class and the constraints on the minority class. This
strategy is thus, as explained previously, not well suited when dealing with imbalanced
datasets. An illustration of this phenomenon on the BALANCE dataset from the UCI
repository is shown in Figure ?7. We observe that increasing the imbalance ratio tends
to generate a metric which classifies (with a A'NN rule) all the examples as the majority
class, thus leading to an accuracy close to 1. On the other hand, the F-measure decreases
with the proportion of positives, showing that the classifier missed many positives, usually
considered as the examples of interest.

3.1 Imbalanced Metric Learning

The PhD Student I was working with developed a Metric Learning algorithm that I based
my work on. The following is an extract of his manuscript presenting the method.
Classic Mahalanobis metric learning algorithms [JWZ09, BHS15, CGY16| are usually

expressed as

minF(M):% S UM, 24, 2;) + AReg(M), (5)

M>0
(Zi ,Zj)€$2

where one wants to minimize the trade-off between a convex loss ¢ over all pairs of
examples and a regularization Reg under the PSD constraint M > 0.

The major drawback of this formulation is that the loss gives the same importance
to any pair of examples (z;, z;) whatever their label y; and y;. Intuitively, this is indeed
not well suited to imbalanced data where the minority class is the set of examples of
interest. Some metric learning algorithms [WS09, ZHS16| allow to weight the role played
by the must-link and cannot-link constraints. However, the problem still holds because
the labels of the examples are not directly taken into account.

Our simple idea is to decompose further the sets of pairs of examples based on their
labels. Each set can then be associated to a specific weight during the optimization to
reduce the negative effect of the imbalance. Concretely, we propose to decompose the



sum over all pairs of Equation (5) into four terms:

min (M) = ! ( Z (M, z;, z;)+ (6)
(

M>0 n?2
zi,2j)ESImT
E (M, z;, zj) +
(2i,25)€DisT

Z (M, z;, 2j) +

(2i,25)€Dis™

Z E(M,zi,zj)) + AReg(M),

(2i,25)€STm—

where the four sets Sim™, Dist, Dis™ and Sim~ are defined as subsets of SxS& respec-
tively as: SimTCSTxST, DisTCSTxS™, Dis CS xST and Sim CS xS~. We set
the regularization term as Reg(M) = ||[M — I||% where I is the identity matrix and ||.||r
is the Frobenius norm. It aims at avoiding over-fitting by enforcing M to be close to the
identity matrix I.

The importance of each of the four sums can then be incorporated into the loss
function ¢ that we define as follows: V (z,2') € 22

aly(M, z,x") if y=+1,y'=+1,
bly(M Noif y=+1,y'=—1
ﬁ(M)z)z/) _ 2( ,33,1’/) 1 y_+ ,y,_ ) (7)
cly(M, z,2') if y=—1,y'=+1,
dty(M, z,2') if y=—1,y'=—1,

with ¢;(M, x,2") = [das(z,2') — 1]y and lo,(M, z,2') = [1 + m — di;(x, 2")]« where []; is
the Hinge loss and m > 0 a margin parameter. The idea of ¢; is to bring examples of the
same class at a distance less than 1 while /5 aims to push far away examples of different
classes at a distance larger than 1 plus a given margin m.

If we look more closely at the proposed Equation (6), when all pairs from SxS are
involved, Sim™* and Sim~ contain respectively n™n* and n~n~ pairs while Dis™ and
Dis™ contain respectively n*n~ and n~n™ elements. This means that Dist and Dis™
contain the symmetric pairs and might be merged. However, metric learning methods
rarely consider all the possible pairs as it becomes quite inefficient in the presence of
a large number of examples. Possible strategies to select the pairs include a random
subsampling [XJRN03, DKJ*T07, XNZ08, ZHS16| or a selection based on the nearest
neighbors rule [WS09, LZT*14]. For this reason, it might make sense to separate the two
sets Dist and Dis™ and allow us to weight them differently as they may not consider the
same subsets of pairs. Another interpretation of such a decomposition in an imbalanced
learning setting is the following: if z; is selected as belonging to the neighborhood of
z;, the minimization of the four terms of Equation (6) can be seen as a nice way to
implicitly optimize with a K'NN rule the true positive, false negative, false positive and
true negative rates respectively.



4 SMOTE and IML combination

4.1 Theoretical framework

The original idea to combine metric learning and SMOTE was to do a dual gradient
descent, alternating between learning the mahalanobis projection as in the IML method,
and learning the position of the synthetic points. In order to do so, synthetic points were
placed on a line between two parent points, x and y. Each synthetic point s; therefore
had coordinates x; + «; * (y; — ;). The loss function, which was the same as the loss
function for IML, was then differentiated in function of the «; in order to learn the optimal
position for each synthetic point between its parents. Mathematically, we had a set F,
of elements with label function [ : E — {—1,1} such that:

np = {e € Ell(e) = 1}|
nn = [{e € E|l(e) = —1}
np < nn (8)

ns = L@—i-lj*np
np

In other words, np is the number of points belonging to the majority class, nn the
number of points of the minority class, and ns the number of generated synthetic points,
which leads to approximate balance. The loss function is then :

ns

f(a7x7y7p7n7M) :a’zai<1 - Oéz)
i=1
ns*np

+b Z (2 + iy — m) — pi)" % M s (2 + i(ys — i) — pi) — 1]

nsxnn

+o Y [T +m— (e + ailys — m) =) % Mox (2 + ci(ys — i) — ny)]
=1

+d Y [(pi—p)" M (p = p}) — 1]
=1

+e Z [(n; —n))" * M xn; —n}) — 1]
i=1

nsxnn

+ f Z[1+m_(pi_ni)T*M*(pi_ni)]

+gx||M —I|[%
(9)
The «;(1 — «;) term is a regularization for the synthetic points to not be too far from
the center of the line between its parents. There is no guarantee that 0 < a; < 1 so a
synthetic point generated from x and y could be placed outside of the [z, y] segment, but
will always be on the (x,y) line. Synthetic points were originally considered the same
as minority class points, but experimentation showed that making them separate in the
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Figure 2: Plots of the IMLS algorithm on a simple 2d example. Purple: Majority points,
Blue: Minority points, Yellow: Synthetic points

loss function, and removing the term that would bring synthetic points closer to other
synthetic points, led to better results. The differentiation for each «; of this loss function
is then:

df(o,,y,p,m)
(50(1'

=a(l — 2a;)
+ b2 % (25 + ai(yi — 25) — pi)t % M * (2, — 15)] (10)
e[ =2 % (2 + o (ys — ) —ng)T x M * (2; — y;)]

This gradient descent on the position of the points can also be performed with other
methods, and I later tried combining this learning on SMOTE with other algorithms.

4.2 Experimentation

In our experiments, we compared several algorithms with the learned SMOTE, the basic
smote and no oversampling on different imbalanced datasets. The metric learning al-
gorithms used were IML, LMINN, Euclidean and MLS. The two first were described
previously, Euclidean is just using the Euclidean distance (instead of a learned one) dur-
ing classification, and MLS is the variant of ITML with the loss function we developed
that discriminates synthetic and minority points.

For our comparison, we did a 5-fold cross-validation of the hyperparameters with
20 different configurations for all the methods on the training set (using 4/5ths of the
training set to learn and 1/5th to validate), and then used the best hyperparamaters to
learn on the entire training set, and test on the rest of the dataset. After learning a
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Dataset IMLS MLS IML oIML LMNN oLMNN ILMNN Euclidean  oEuclidean 1Euclidean

glass 694+47 682+38 692+94 677+65 676+86 686+63 678+56 675+67 69.0+52 T03+45
hayes 841+103 86.1+87 712147 798+£11.0 740+£127 B6.9+ 104 855+11.7 636+ 142 859+9.0 885+8R82
libras 853+87 875+94 BO6E124 B54+96 B826+108 873+104 B845+87 746103 7751106 T89+88
newthyroid 944+37 93736 928+41 922+44 B85.1+56 B81+63 90847 B854+57 BO9+44 920+£33
spectfheart 457 +£51 453+56 283+£117 427+£60 419+100 462+£79 505+68 37.0x+95 505+53 505+47
wine 982+26 981+28 98.1+25 978+23 966+30 958+38 893140 86.0x34 B8ST3T 937+£35
Mean 795+59 79857 734+£91 7T76+66 T46+8B5 T8RLTS5 78169 69083 75964 T90+£55
Total time 570 min 40 min 17 min 25 min 192 min 220 min 764 min 0 min 0 min 520 min
Average Rank 3.00 3.14 6.14 5.57 771 429 543 9.57 6.14 4.00

Table 1: Results of our experiments on different datasets. 1.... method with learned
SMOTE, o...: method with basic SMOTE. Scores averaged over 40 iterations, with mean
results and standard deviation indicated.

projection with the metric learning algorithms,; classification was done using the K-NN
algorithm. We give the results of our experiments in Figure .

Before applying the metric learning algorithms, the data was normalized on each
axis. In the experiments of Figure , however, this normalization was not done for the
Euclidean and oEuclidean methods. Later tests showed that the learned smote combined
with the euclidean method were actually slightly less good than the euclidean with basic
SMOTE. Taking this into account, we can say that learning the position of the points
actually led to worse results in combination with any of the metric learning techniques.
This seemed very surprising, which led us to do more experiments comparing smote and
learned SMOTE, which is when we realized that SMOTE actually placed points in the n-
orthotope between parent points and not the line. Experiments showed that the learned
SMOTE performed nearly exactly the same as the SMOTE with a line, both slightly less
well than the true SMOTE. This still indicates that our learning on the position of the
points had no benefits.

We did however manage to improve the results of the IML method combined with
SMOTE, by making the algorithm distinguish minority points from synthetic points. This
leads us to believe that a good way of improving SMOTE may be by adapting subsequent
algorithms that receive the oversampled data. While this is not an easily generalizable
method, it does raise interesting perspectives for the field of oversampling.

Many other attempts were made to improve the learning, for example alternating the
gradient descents to learn the positions and the projection instead of doing one completely
and then the other, or changing the loss function to a more adversarial view, trying to
place the synthetic points closer to the majority class points to provide more diversity.
Sadly, none of them led to a noticeable gain in performance. In our choice of parent
points for the SMOTE algorithm, we also tried to use the learned Mahalanobis distance
instead of the basic Euclidean distance (in the choice of the K nearest neighbors), but
that did not change performances either.

5 Conclusion

We built upon a metric learning method and tried to combine it with SMOTE, in order
to learn the position of the points in the SMOTE algorithm. While we were unsuccessful
in our attempts, we did highlight an interesting discrepancy between the original SMOTE



and most implementations and further extensions of the method (placing points in the
n-orthotope instead of the line). We also managed to improve the results of the metric
learning algorithm by making it sensitive to the difference between synthetic and minority
points, which may be interesting for the field of oversampling : adapting other algorithms
to learn on oversampled data may also lead to performance improvements. While our
attempts at introducing learning into the SMOTE algorithms did not provide meaningful
results, maybe developing a new oversampling method from ground-up around a learning
method could prove more successful. We can cite the conditional Generative Adversarial
Networks (¢cGAN) that have showed much promise in that field recently[DB17].
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