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Abstract

The chromatic number of a directed graph is the minimum number of induced acyclic subdi-
graphs that cover its vertex set, and accordingly, the chromatic number of a tournament is the
minimum number of transitive subtournaments that cover its vertex set. The neighborhood of
an arc uv in a tournament T is the set of vertices that form a directed triangle with arc uv. We
show that if the neighborhood of every arc in a tournament has bounded chromatic number,
then the whole tournament has bounded chromatic number. This holds more generally for ori-
ented graphs with bounded independence number, and we extend our proof from tournaments
to this class of dense digraphs. As an application, we prove the equivalence of a conjecture of
El-Zahar and Erdős and a recent conjecture of Nguyen, Scott and Seymour relating the structure
of graphs and tournaments with high chromatic number.

1 Introduction

The chromatic number of a graph is the minimum integer k required to partition its vertex set
into k independent sets. The chromatic number of a tournament (and more generally, a directed
graph) is the minimum integer k required to partition its vertex set into k acyclic sets. Exploring
the similarities and differences between the two notions is a well-studied area [EH89, APS01].

For example, if a graph has a large clique, it must have high chromatic number. However, the
converse is far from true. In fact, a graph can be triangle-free, implying that the neighborhood of
each vertex is an independent set, and yet still have high chromatic number [Des54]. In [BCC+13],
it was conjectured that this phenomenon does not occur in tournaments. Specifically, [BCC+13]
conjectured that in a tournament T , if each vertex v ∈ V (T ) has an out-neighborhood N+(v) that
induces a subtournament T [N+(v)] with bounded chromatic number, then T itself should have
bounded chromatic number. This was proved by [HLTW19] with the following theorem.

Theorem 1.1 ([HLTW19]). There is a function f such that if for all v ∈ V (T ), ~χ(T [N+(v)]) ≤ t,
then ~χ(T ) ≤ f(t).
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We say a tournament T has vertex set V (T ) and arc set A(T ). For an arc e = uv ∈ A(T ),
we define the neighborhood of arc e to contain all vertices w in V (T ) such that w forms a directed
triangle with uv. Formally, we define N(e) = N+(v) ∩ N−(u). A stronger theorem, analogous to
Theorem 1.1, but with vertex out-neighborhoods replaced by arc neighborhoods, is the following.

Theorem 1.2. There is a function f such that for any tournament T , if for all e ∈ A(T ),
~χ(T [N(e)]) ≤ t, then ~χ(T ) ≤ f(t).

This theorem is a special case of 13.3 in [NSS23]. We give a different proof, obtained indepen-
dently, which we subsequently extend to prove our main theorem. Notice that the assumption that
~χ(T [N+(v)]) ≤ t for every vertex v ∈ V (T ) is stronger than the assumption that ~χ(T [N(e)]) ≤ t

for every arc e ∈ A(T ). However, our proof of Theorem 1.2 uses a theorem from [HLTW19], which
they used to prove Theorem 1.1. Thus, we do not give a new proof of Theorem 1.1. We say a
tournament T is t-arc-bounded if for every arc e ∈ A(T ), ~χ(T [N(e)]) ≤ t. We can now restate
Theorem 1.2 as follows.

Theorem 1.3. There is a function f such that for every t-arc-bounded tournament T , we have
~χ(T ) ≤ f(t).

We prove Theorem 1.3 in Section 2, where in addition to the aforementioned theorem of
[HLTW19], we use ideas from [KN23], originally developed to design efficient algorithms for col-
oring tournaments. In Section 3, we extend our proof of Theorem 1.3 to oriented graphs with
bounded independence number and prove our main theorem. For the sake of simplicity, we often
refer to oriented graphs as digraphs, but in this paper, a digraph never contains a directed 2-cycle
or “digon”. Recall that the independence number of a digraph is the maximum size of a vertex set
that contains no arcs. We say a digraph D has vertex set V (D) and arc set A(D). As we did for
tournaments, for an arc e = uv, we define N(e) = N+(v) ∩N−(u).

Theorem 1.4. There is a function dense such that for any digraph D with independence number
α, if ~χ(D[N(e)]) ≤ t for every arc e ∈ A(D), then ~χ(D) ≤ dense(t, α).

As an application of Theorem 1.4, we prove the equivalence of two conjectures, one on graphs
with high chromatic number and one on tournaments with high chromatic number. The first one,
concerning graphs, was originally posed by [EE85] in the form of an open problem, which asks if
the following conjecture is true.

Conjecture 1.5 ([EE85]). For all integers t, c ≥ 1, there exists d ≥ 1, such that if a graph G

satisfies χ(G) ≥ d, and has no clique with t vertices (i.e., ω(G) < t), then there are subsets
A,B ⊆ V (G) with χ(G[A]), χ(G[B]) ≥ c, such that there are no edges between A and B.

The second conjecture, concerning tournaments, was recently stated by [NSS24].

Conjecture 1.6 ([NSS24]). For all c ≥ 0, there exists d ≥ 0 such that if T is a tournament with
~χ(T ) ≥ d, there are two sets A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c and all arcs between A

and B go from vertices of A to vertices of B.

[NSS23] show that Conjecture 1.6 implies Conjecture 1.5. They explore the possibility of the
converse being true, but they do not prove it and write that Conjecture 1.6 seems to be strictly
stronger than Conjecture 1.5. In Section 4, we prove that Conjecture 1.5 does in fact imply
Conjecture 1.6, showing that the two conjectures are equivalent.
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2 Arc local-to-global for tournaments

In this section, we prove Theorem 1.3. Since our goal is to color a tournament T , we can assume
that T is strongly connected; otherwise T can be partitioned into strongly connected parts, and
each one can be colored separately. A dominating set (respectively, absorbing set) in T is a set of
vertices S ⊂ V such that for every v ∈ V \ S, there is a u ∈ S such that uv (respectively, vu) is an
arc in T . By domination number, we mean the minimum size of a dominating set. We will use the
following theorem from [HLTW19].

Theorem 2.1 ([HLTW19]). For every constant k, there exist constants K and ℓ such that every
tournament T with domination number at least K has a subset of size ℓ that induces a tournament
with chromatic number at least k.

Following the notation in [AAC24], we define a (k, ℓ)-cluster to be a set of vertices S such that
~χ(T [S]) ≥ k, |S| ≤ ℓ and T [S] is strongly connected. This notion is directly related to the previous
theorem, which can be restated for our purposes as follows.

Corollary 2.2. There exist functions K and ℓ such that for every integer t ≥ 1, every tournament
T contains either i) a dominating set and an absorbing set, each of size at most K(t), or ii) a
(t, ℓ(t))-cluster.

Proof. Let t be a constant. By Theorem 2.1, there exist constants K(t) and ℓ(t) such that one can
find either a dominating set of size at most K(t), or a subset of size ℓ(t) with chromatic number
t. If this subset is not strongly connected, we can find a strongly connected subset with chromatic
number t. Then take the tournament obtained by reversing all the arcs in T and repeat the previous
argument. A dominating set in this tournament is an absorbing set in T , while a subset with high
chromatic number would also have high chromatic number in T , as reversing all the arcs preserves
the chromatic number.

Now let us fix a constant t. Using the function ℓ from Corollary 2.2, we define a jewel to be
a (t + 1, ℓ(t + 1))-cluster. We will use the fact that in a t-arc-bounded tournament, for any arc
e, the vertex set N(e) does not contain a jewel.1 We now present some useful tools for coloring
t-arc-bounded tournaments.

2.1 Jewels and other tools for coloring t-arc-bounded tournaments

We begin with a decomposition lemma for tournaments.

Lemma 2.3. Let T be a tournament, and let P = (v0, v1, . . . , vk) be a shortest path in T from v0
to vk with arcs ei = vi−1vi for i : 1 ≤ i ≤ k. Then we have the following properties.

1. Each vertex in N−(v0) ∩N+(vk) belongs to N(ei) for some i : 1 ≤ i ≤ k.

2. If k ≥ 3, then each vertex in V (P ) belongs to N(ei) for some i : 1 ≤ i ≤ k.

1We will redefine a jewel in Section 3, but it will have the same purpose.
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3. If k = 2, then v0 belongs to N(e2) and v2 belongs to N(e1).

Proof. First consider a vertex v in N−(v0) ∩ N+(vk) and let i be the maximum index such that
v ∈ N−(vi). Some vi must exist, since v ∈ N−(v0). Then v ∈ N(ei+1). Next, consider a vertex
v ∈ V (P ). Notice that all arcs between vertices V (P ) that are not adjacent in P must go backward.
It follows that vi ∈ N(ei+2) and vi ∈ N(ei−1). When k ≥ 3, we can conclude that each vi belongs
to N(ej) for some j such that 1 ≤ j ≤ k. When k = 2, the same argument applies, except now v1
belongs neither to N(e1) nor to N(e2).

Lemma 2.4. Let T be a t-arc-bounded tournament. Suppose that P = (v0, v1, . . . , vk) is a shortest
path from v0 to vk, and let S = (N−(v0)∩N+(vk))∪V (P ). Then T [S] can be colored with at most
5t colors.

Proof. If k ≥ 3, then each vertex in S belongs to N(ei) for some i : 1 ≤ i ≤ k. For i < j, we say an
arc from a vertex in N(ei) to a vertex in N(ej) is forward with length j− i. Observe that there are
no arcs from N(ei) to N(ej) for j ≥ i+5, since this would give a shorter path from v0 to vk. Thus,
we can color all the vertices in S using five color palettes of t colors each, using one color palette
for each N(ei) assigned modulo 5. Since all forward arcs have length at most four, each cycle with
vertices belonging to different N(ei)’s has at least two different colors. Finally, if k = 2, then T [S]
can be colored with 2t+ 1 colors, and if k = 1, then T [S] can be colored with t+ 2 colors.

Lemma 2.4 can be used to prove the following two lemmas, which we will apply shortly to prove
Theorem 1.3.

Lemma 2.5. Let T be a t-arc-bounded tournament, containing two vertices u and v such that
~χ(T [N+(u)]) ≤ g(t) and ~χ(T [N−(v)]) ≤ g(t) for some function g. Then ~χ(T ) ≤ 2 · g(t) + 5t.

Proof. Since T is strongly connected, we can set v0 = u and vk = v, find a shortest path from v0
to vk, and apply Lemma 2.4 to color the subtournament T [S]. Any remaining vertex belongs to at
least one of the sets N+(v0) and N−(vk), which can each be colored with g(t) colors.

If T has small dominating and absorbing sets, then the following lemma provides a bound on
~χ(T ).

Lemma 2.6. Let T be a t-arc-bounded tournament. Suppose T has a dominating set γ+(T ) and
an absorbing set γ−(T ). Then ~χ(T ) ≤ 5t · |γ−(T )| · |γ+(T )|.

Proof. We may assume that T is strongly connected. Let q = |γ−(T )| · |γ+(T )|. Let P =
{P1, P2, . . . , Pq} be a set of |γ−(T )| · |γ+(T )| shortest paths from each u ∈ γ−(T ) to each w ∈
γ+(T ). Then for each v ∈ V , there is some path Pj ∈ P from some u to some w such that
v ∈ (N−(u) ∩N+(w)) ∪ V (Pj). So we can apply Lemma 2.4, which implies the lemma.

To prove Theorem 1.3, we need one more lemma. First, we give some notation and a definition.
For two disjoint vertex sets, X,Y ⊂ V , we say X ⇒ Y if all arcs between X and Y go from X to
Y . For a set S ⊂ V , we define the set N±(S) to be all vertices v in V \ S such that there exist
vertices u,w ∈ S and arcs uv and vw in T .

4



Definition 2.7. We define a jewel-chain of length p in a tournament to be an ordered set X =
(Xi)1≤i≤p such that each Xi induces a jewel, all Xi’s are disjoint, and Xi ⇒ Xi+1 for all i such
that 1 ≤ i ≤ p− 1.

For a jewel-chain X, we say that an arc uv is forward if u ∈ Xi and v ∈ Xj and i < j. If j < i,
then uv is backward. Jewel-chains in t-arc-bounded tournaments are useful because they contain
no backward arcs.

Observation 2.8. Let T be a t-arc-bounded tournament and let X be a jewel-chain in T . Then X

contains no backward arcs.

Proof. Consider a backward arc e = uv, with u ∈ Xj and v ∈ Xi for j > i such that j − i is
minimized. It must be the case that j > i + 1, since all arcs between Xi and Xi+1 are forward
by definition. Then Xi+1 ⊆ N(e), and since Xi+1 has chromatic number at least t + 1, we have
~χ(T [N(e)]) ≥ t + 1, which contradicts T being t-arc-bounded. Thus, all arcs with endpoints in
distinct Xi’s must be forward.

Lemma 2.9. Let T be a t-arc-bounded tournament that contains a jewel. Then there exists a
function g such that there are two vertices u, v such that ~χ(T [N+(u)]) ≤ g(t), and ~χ(T [N−(v)]) ≤
g(t).

Proof. Let X be a jewel-chain in T of maximum length, say p. Consider X1. Let Y be the set
of vertices such that Y ⇒ X1. Then Y does not contain a jewel (otherwise X would not have
maximum length). By Corollary 2.2, Y must have a small dominating set and a small absorbing
set, each of size at most K(t+ 1). So we can apply Lemma 2.6 to bound the chromatic number of
Y by 5t · (K(t+1))2 . Moreover, the set N±(X1) has chromatic number at most ℓ(t+1) · t, since X1

contains a Hamilton cycle with at most ℓ(t+ 1) arcs and each vertex in N±(X1) belongs to N(e)
for some e in the Hamilton cycle. Finally, a vertex v in X1 can have in-neighbors in X1 itself, but
this set has chromatic number at most |X1| ≤ ℓ(t+ 1).

Set g(t) = 2ℓ(t+ 1) · t+ 5t · (K(t+ 1))2. Then each vertex u ∈ X1 has ~χ(T [N−(u)]) ≤ g(t). By
the same argument, each vertex v ∈ Xp has ~χ(T [N+(v)]) ≤ g(t). This proves Lemma 2.9.

2.2 Proof of Theorem 1.3

We are now ready to prove Theorem 1.3.

Theorem 1.3. There is a function f such that for every t-arc-bounded tournament T , we have
~χ(T ) ≤ f(t).

Proof. Let f(t) = 2 ·g(t)+5t, where g is defined as in the end of the Proof of Lemma 2.9. If T does
not contain a jewel, then by Corollary 2.2, it contains a dominating and an absorbing set each of
size at most K(t+ 1). In this case, we can apply Lemma 2.6 to show that T can be colored with
at most 5t · (K(t + 1))2 colors. If T contains a jewel, then we can apply Lemma 2.9 and Lemma
2.5 to prove the theorem.
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3 Arc local-to-global for dense digraphs

In this section, we extend Theorem 1.3 from tournaments to oriented graphs with bounded in-
dependence number. Since our goal is to color a digraph D, we can assume that D is strongly
connected; otherwise D can be partitioned into strongly connected parts, and each one can be
colored separately. An important tool for the proof is Theorem 3.1, which extends Theorem 2.1
from tournaments to digraphs with bounded independence number.2 As the proof of Theorem
3.1 is very similar to the proof of Theorem 2.1 from [HLTW19], it is deferred to Appendix A. A
(k, ℓ)-cluster in a digraph D is a set of vertices S in V (D) such that ~χ(D[S]) ≥ k, |S| ≤ ℓ and D[S]
is strongly connected.

Theorem 3.1. There exist functions K and ℓ such that for every pair of integers k, α ≥ 1, ev-
ery digraph D with independence number α and dominating number at least K(α, k) contains a
(k, ℓ(α, k))-cluster.

Corollary 3.2. There exist functions K and ℓ such that for every pair of integers k, α ≥ 1, every
digraph D with independence number α contains either i) a dominating and an absorbing set, each
of size at most K(α, k), or ii) a (k, ℓ(α, k))-cluster.

Proof. Let k and α be constants, and D a digraph with independence number α. By Theorem
3.1, there exist constants K(α, k) and ℓ(α, k) such that one can find either a dominating set of size
at most K(α, k), or a subset of size ℓ(α, k) with chromatic number at least k. Take the digraph
obtained by reversing all the arcs in D and repeat the previous argument. A dominating set in this
digraph is an absorbing set in D, while a subset with high chromatic number would also have high
chromatic number in D, as reversing all the arcs preserves the chromatic number.

In a digraph D = (V,A), there are some pairs of vertices that do not have arcs between them.
A pair u, v is a non-edge in D if neither arc uv nor arc vu belongs to A. The proof of the next
theorem involves adding arcs to a digraph D to obtain a tournament. Since there are two sets of
arcs, A and B, we use, for example, N+

A (u) (rather than the more standard N+
D (u)) and N+

B (u) to
denote the set of vertices adjacent from u via arcs in A or arcs in B, respectively. We define No

A(u)
to be all vertices in V that form non-edges with u in D.3 The goal in this section is to prove our
main theorem.

Theorem 1.4. There is a function dense such that for any digraph D with independence number
α, if ~χ(D[N(e)]) ≤ t for every arc e ∈ A(D), then ~χ(D) ≤ dense(t, α).

Proof. We prove this theorem by induction on α. For the base case, Theorem 1.2 proves the
statement for α = 1, by setting dense(t, 1) = f(t). For the induction hypothesis, we assume that
for any digraph D = (V,A) with independence number α − 1, if for all e ∈ A, ~χ(D[N(e)]) ≤ t,
then ~χ(D) ≤ dense(t, α − 1). Now our goal is to prove that for any digraph D = (V,A) with
independence number α, if for all e ∈ A, ~χ(D[N(e)]) ≤ t, then ~χ(D) ≤ dense(t, α).

2Theorem 1.1 was extended to digraphs with bounded independence number by [HLNT19], but they did not
provide an extension of Theorem 2.1.

3We could have used No

D(u) rather than No

A(u) (since we never use No

B(u)), but we choose No

A(u) for the sake of
consistency.
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Consider a digraph D = (V,A) with independence number α. We construct a tournament
T = (V,A ∪ B) where each arc in B is a non-edge in D. Recall that we use N+

A (u) to denote the
set of vertices adjacent from u via arcs from A. Now we assign directions as follows. For each
non-edge u, v in D, if N+

A (v)∩N−
A (u) and N+

A (u)∩N−
A (v) are both empty (i.e., contain no vertices)

or are both non-empty, we direct the arc arbitrarily. Otherwise either N+
A (u) ∩ N−

A (v) = ∅, and
we direct the arc from v to u, or N+

A (v) ∩N−
A (u) = ∅ and we direct the arc from u to v. Thus, we

have the following property for each arc uv in B: Either N+
A (v) ∩ N−

A (u) contains no vertices or
N+

A (v) ∩N−
A (u) and N+

A (u) ∩N−
A (v) both contain at least one vertex.

Now our goal is to color the tournament T such that each color class induces an acyclic set of
arcs from A. This will in turn bound the chromatic number of D. We use the notation D[NT (e)]
to denote the subgraph of D (i.e., arcs from A) in the neighborhood of arc e in T .

Claim 1. ∀e ∈ A ∪B, ~χ(D[NT (e)]) ≤ 3 · dense(t, α − 1) + 2t.

Proof. Consider an arc e = uv ∈ A. We partition NT (e) into three subsets of vertices.

(i) S1 = N−
A (u) ∩N+

A (v). By the condition of the theorem, ~χ(D[S1]) = ~χ(D[NA(e)]) ≤ t.

(ii) S2 = N−
B (u). Then D[S2] has independence number at most α − 1. Thus, by the induction

hypothesis, ~χ(D[S2]) ≤ dense(t, α − 1).

(iii) S3 = N+
B (v). Then D[S3] has independence number at most α − 1. Thus, by the induction

hypothesis ~χ(D[S3]) ≤ dense(t, α− 1).

Therefore, for an arc e ∈ A, we have ~χ(D[NT (e)]) ≤ 2 · dense(t, α − 1) + t. Next, we consider
an arc e = uv ∈ B. We partition NT (e) into three subsets of vertices.

(i) S1 = N−
A (u)∩N+

A (v). Then either S1 is empty, in which case ~χ(D[S1]) = 0, or S1 is non-empty.
In this case, take any vertex w ∈ N+

A (u)∩N−
A (v). Notice that S1 ⊆ NA(uw)∪NA(wv)∪N

o
A(w).

By the condition of the theorem, ~χ(D[NA(uw)]) ≤ t and ~χ(D[NA(wv)]) ≤ t. Finally, No
A(w)

has independence number at most α− 1. Thus by the induction hypothesis, ~χ(D[No
A(w)]) ≤

dense(t, α− 1). Therefore, ~χ(D[S1]) ≤ 2t+ dense(t, α − 1).

(ii) S2 = N−
B (u). Then D[S2] has independence number at most α − 1. Thus, by the induction

hypothesis ~χ(D[S2]) ≤ dense(t, α− 1).

(iii) S3 = N+
B (v). Then D[S3] has independence number at most α − 1. Thus, by the induction

hypothesis ~χ(D[S3]) ≤ dense(t, α− 1).

Therefore, ~χ(D[NT (e)]) ≤ 3 · dense(t, α− 1) + 2t. ✸

Claim 2. For any pair of vertices u, v in V , ~χ(D[N−
T (u) ∩N+

T (v)]) ≤ 15 · dense(t, α− 1) + 10t.

Proof. Recall that D, and therefore T , is strongly connected. For any pair of vertices u, v, take the
shortest path (ei)1≤i≤k from u to v in T . Any vertex in N−

T (u)∩N+
T (v) must be in the neighborhood

NT (ei) of some arc ei of the shortest path. An arc from a vertex in NT (ei) to a vertex in NT (ej)
is forward if i < j and backward if j < i. There can be no arc in A from a vertex in NT (ei) to a
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vertex in NT (ej) for j ≥ i + 5, or else there would be a shorter path from u to v. Thus, we can
use five color palettes of 3 · dense(t, α− 1) + 2t colors each, and color NT (ei) with the color palette
i mod 5. By Claim 1, each neighborhood NT (ei) does not contain a monochromatic directed cycle
of arcs from A. Because all forward arcs from A between different neighborhoods are bicolored, this
results in a coloring with no monochromatic directed cycle of arcs from A. In total, this coloring
uses 15 · dense(t, α− 1) + 10t colors. ✸

If we can find a pair of vertices u, v such that ~χ(D[N+
T (u) ∪N−

T (v)]) is small (i.e., bounded by
a function of t and α), then we can use Claim 2 to bound ~χ(D) and prove the theorem. To do this,
we need a few more tools.

Claim 3. If the tournament T = (V,A ∪ B) has a dominating set γ+(T ) and an absorbing set
γ−(T ), then ~χ(D) ≤ |γ+(T )| · |γ−(T )| · (15 · dense(t, α− 1) + 10t+ 2).

Proof. We now define a coloring C of D. For each pair of vertices u ∈ γ−(T ), v ∈ γ+(T ), we can
color the set N−

T (u) ∩N+
T (v) using a different palette of 15 · dense(t, α − 1) + 10t colors by Claim

2. Each vertex w of V \ (γ−(T ) ∪ γ+(T )) can be colored this way; indeed for each such vertex w,
there is some pair of vertices u ∈ γ−(T ), v ∈ γ+(T ) such that w ∈ N−

T (u)∩N+
T (v). Moreover, each

vertex in γ+(T ) ∪ γ−(T ) can be colored with its own color. If a vertex is assigned more than one
color, simply use the first color it is given. This coloring uses a total of at most |γ+(T )| · |γ−(T )| ·
(15 · dense(t, α − 1) + 10t) + |γ+(T )|+ |γ−(T )| ≤ |γ+(T )| · |γ−(T )| · (15 · dense(t, α− 1) + 10t+ 2)
colors. ✸

Set d = 3 · dense(t, α − 1) + 2t. Notice that T = (V,A ∪ B) is not necessarily d-arc-bounded,
since ~χ(T [NT (e)) ≥ ~χ(D[NT (e)]). We now modify the definition of a jewel (defined in the previous
section) for our current setting: A jewel is a subset J ⊂ V such that J is a (d+1, ℓ(α, d+1))-cluster
in D, so ~χ(D[J ]) ≥ d+ 1 and |J | ≤ ℓ(α, d + 1).

Definition 3.3. We define a jewel-chain in T of length p to be an ordered set X = (Xi)1≤i≤p such
that each Xi induces a jewel in D (i.e., D[Xi] is a jewel), all Xi’s are disjoint, and Xi ⇒ Xi+1 for
all 1 ≤ i ≤ p− 1 (i.e., Xi is complete to Xi+1 in T ).

As in the previous section, we say that for a jewel chain X, an arc uv is forward if u ∈ Xi and
v ∈ Xj and i < j. If j < i, then arc uv is backward. The next claim is similar, but not identical,
to Observation 2.8. The subtle difference stems from the fact that we care about the chromatic
number of jewel with respect to D rather than T .

Claim 4. A jewel-chain X contains no backward arcs in T .

Proof. Consider a backward arc e = uv, with u ∈ Xj and v ∈ Xi for j > i such that j − i is
minimized. It must be the case that j > i+ 1, since all arcs between Xi and Xi+1 are forward by
definition. Then Xi+1 ⊆ NT (e), and since ~χ(D[NT (e)]) ≥ d + 1, this contradicts Claim 1. Thus,
all arcs with endpoints in distinct Xi’s must be forward. ✸

Let X be a jewel-chain in T of maximum length, say p. Define Y to be the vertex set such
that Y ⇒ X1 in T . Then D[Y ] does not contain a jewel by assumption (otherwise, we could make
the jewel-chain longer). By Corollary 3.2, since D[Y ] does not contain a (d+1, ℓ(α, d+1))-cluster,
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D[Y ] contains a dominating set and an absorbing set, each of size at most K(d+1, α). Notice that
a dominating (absorbing) set in D[Y ] is also a dominating (absorbing) set in T [Y ]. So we can apply
Claim 3 to bound the chromatic number of D[Y ] by (K(d+1, α))2 · (15 · dense(t, α− 1) + 10t+2).

Moreover, the set N±
T (X1) has chromatic number at most ~χ(D[N±

T (X1)]) ≤ ℓ(d + 1, α) · d.
Finally, v ∈ X1 can have in-neighbors in X1 itself, but these can have chromatic number at most
|X1| ≤ ℓ(d+ 1, α).

So for each vertex v ∈ X1, we have

~χ(D[N−
T (v)]) ≤ (K(d+ 1, α))2 · (15 · dense(t, α− 1) + 10t+ 2) + ℓ(d+ 1, α) · (d+ 1).

By the same argument, each vertex u ∈ Xp has the same bound on ~χ(D[N+
T (u))). So we have

~χ(D[N+
T (u) ∪N−

T (v)]) ≤ 2((K(d + 1, α))2 · (15 · dense(t, α− 1) + 10t+ 2) + ℓ(d+ 1, α) · (d+ 1)).

By Claim 2, we have

~χ[D] ≤ 2((1 + (K(d+ 1, α))2) · (15 · dense(t, α− 1) + 10t+ 2) + ℓ(d+ 1, α) · (d+ 1)).

Since d = 3 · dense(t, α− 1) + 2t, we can define the function dense as follows.

dense(t, α) = 2((1 + (K(3 · dense(t, α− 1) + 2t+ 1, α))2) · (15 · dense(t, α− 1) + 10t+ 2)

+ ℓ(3 · dense(t, α− 1) + 2t+ 1, α) · (3 · dense(t, α− 1) + 2t+ 1).

So we have ~χ[D] ≤ dense(t, α), concluding the proof of the theorem.

4 Equivalence of Conjectures 1.5 and 1.6

[NSS23] show that Conjecture 1.6 implies Conjecture 1.5. In this section, we prove that Conjecture
1.5 implies Conjecture 1.6, showing they are equivalent. Our main tool is Theorem 1.4.

Let s be a function such that s(x) ≥ x2 · s(x− 1) + x and let T be a tournament. Recall that a
(t, s(t))-cluster is a subset S of V of size s(t) such that ~χ(T [S]) ≥ t. For brevity, we use t-cluster
to denote a (t, s(t))-cluster in this section.

Definition 4.1. Define a t-heavy arc e ∈ A(T ) to be an arc such that T [N(e)] contains a (t− 1)-
cluster, and a t-light arc to be an arc that is not t-heavy.

Let us prove a lemma that will allow us to restate Conjecture 1.6. The proof is reminiscent of
the proof of 3.7 in [BCC+13] and essentially the same as the proof of Lemma 3.4 in [AAC24]. Let
clust be a function such that clust(x) = x · 2s(2x) + s(2x) + 1.

Lemma 4.2. For all c ≥ 0, in any tournament T with ~χ(T ) ≥ clust(c) that has a 2c-cluster, there
are two sets A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c and all arcs between A and B go from
vertices of A to vertices of B.
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Proof. Let C ⊂ V (T ) be a 2c-cluster. By the definition of a cluster, |C| ≤ s(2c). So there are at
most 2s(2c) ways of partitioning C. Consider any vertex v ∈ V (T )\C. Then (N+(v)∩C,N−(v)∩C)
forms a partition of C. Thus, we can partition V (T )\C into at most 2s(2c) subsets (Si)1≤i≤2s(2c) such
that all vertices in a subset Si have the same in-neighborhood and out-neighborhood in C (i.e., each
vertex in Si partitions C in the same way). If every Si can be colored with at most c colors, T can be
colored with at most c · 2s(2c)+ s(2c) colors. Therefore, since ~χ(T ) ≥ clust(c) = c · 2s(2c)+ s(2c)+ 1
by the condition of the lemma, there must exist some subset Si with ~χ(T [Si]) ≥ c. Consider
the partition (N+(v) ∩ C,N−(v) ∩ C) of C for a vertex v ∈ Si. Either ~χ(T [N+(v) ∩ C]) ≥ c or
~χ(T [N−(v) ∩ C]) ≥ c, since χ(C) ≥ 2c. By definition, Si is complete to N+(v) ∩ C and complete
from N−(v)∩C. Thus by setting A = N−(v)∩C and B = Si if ~χ(T [N

−(v)∩C]) ≥ c, and A = Si,
B = N+(v) ∩ C if ~χ(T [N+(v) ∩ C]) ≥ c, we have found A and B with A complete to B and
~χ(T [A]), ~χ(T [B]) ≥ c.

Let us restate Conjectures 1.5 and 1.6.

Conjecture 4.3 (Restatement of Conjecture 1.5). There exists a function ee such that for every
pair of integers t, c ≥ 1, if a graph G satisfies χ(G) ≥ ee(t, c) and ω(G) < t, then there are subsets
A,B ⊆ V (G) with χ(G[A]), χ(G[B]) ≥ c, such that there are no edges between A and B.

Conjecture 4.4. There exists a function nss such that for every pair of integers t, c ≥ 1, if
a tournament T satisfies ~χ(T ) ≥ nss(t, c) and T contains no t-cluster, then there are subsets
A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c and all arcs between A and B go from vertices in A

to vertices in B.

Conjecture 4.4 may seem weaker than Conjecture 1.6, but is in fact equivalent. This is a direct
consequence of Lemma 4.2. Indeed, for any c, if a tournament T has no sets A and B with A

complete to B and ~χ(T [A]), ~χ(T [B]) ≥ c, then by the contrapositive of Lemma 4.2 it has no 2c-
cluster or it has chromatic number less than clust(c). Therefore, Conjecture 4.4 will imply that T
has chromatic number strictly less than d = max(nss(2c, c), clust(c)), which is some constant since
c is fixed. This is exactly the contrapositive of Conjecture 1.6. We now state the contrapositive of
Conjecture 4.4, which is also equivalent to Conjecture 1.6.

Conjecture 4.5 (Restatement of Conjecture 4.4). There exists a function nss such that for every
pair of integers t, c ≥ 1, if a tournament T contains no t-cluster and T does not contain subsets
A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c with all arcs between A and B going from vertices in
A to vertices in B, then ~χ(T ) ≤ nss(t, c).

Proof of Conjecture 4.5, assuming Conjecture 4.3. For t = 2, a tournament T with no 2-cluster
does not contain a directed triangle and therefore has ~χ(T ) = 1. Thus, we have nss(2, c) = 1. Now
we assume that nss(t− 1, c) exists. We will prove that nss(t, c) exists.

We consider a tournament T , which by assumption does not contain a t-cluster. Since t is now
fixed for the rest of this proof, we simply use heavy and light in place of t-heavy and t-light. Let
L be the set of light arcs and H the set of heavy arcs. Notice that every arc in T must be either
in L or in H. Let DH = (V,H) and DL = (V,L) be digraphs containing the heavy and light arcs,
respectively. Let GH = (V,H) denote the undirected graph of heavy edges and let GL = (V,L)
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denote the undirected graph of light edges. (Notice that we are abusing notation by using H and
L to refer to both directed and undirected edge sets.)

Our first claim is that the graph GH has no large clique, and consequently, the graph GL has
bounded independence number.

Claim 1. ω(GH) ≤ t− 1.

Proof. Suppose that GH contains a Kt (i.e., a clique on t vertices) and let S be the set obtained
by including the t vertices of the clique in addition to the vertices in the (t − 1)-cluster in the
neighborhood of each arc corresponding to an edge in the clique. Then S has at most t+ t2 ·s(t−1)
vertices. Moreover, T [S] cannot be colored with t − 1 colors since every arc is heavy and the
endpoints of a heavy arc cannot have the same color in any coloring using only t− 1 colors. Since
S contains a clique, we have that χ(S) ≥ t. Thus, T contains a t-cluster, which is a contradiction.
✸

Claim 2. α(GL) ≤ t− 1.

Proof. L andH are complementary edge sets (i.e., every edge not in L belongs to H and vice versa).
If GL has an independent set of size t, then GH would have a clique on those same t vertices, which
would contradict Claim 1. ✸

Claim 3. For every arc e ∈ L, ~χ(T [N(e)]) ≤ nss(t− 1, c).

Proof. By definition, the neighborhood of any light arc contains no (t − 1)-cluster. Thus by the
induction hypothesis it can be colored with nss(t− 1, c) colors. ✸

It follows immediately that the neighborhood of every arc in DL has chromatic number at most
nss(t−1, c). We can then use Theorem 1.4 to show that DL can be colored with dense(nss(t−1, c))
of colors.

Fix such a coloring of DL. Each color induces a tournament that has a vertex ordering in which
each backward arc belongs to H (since all monochromatic arcs with the same color from L form
an acyclic digraph). Consider the subtournament Ti induced on vertices with the ith color, let
n denote the number of vertices in this subtournament and fix a vertex ordering {v1, . . . , vn} in
which all arcs in DL are forward. Let Gi be the undirected graph on this vertex set whose edge set
corresponds to the backward arcs of Ti with respect to the fixed vertex ordering. Notice that Gi is
a subgraph of GH , which is Kt-free by Claim 1.

Now let us apply Conjecture 4.3 to the graph Gi. Let c2 = 2tc. Either each Gi has chromatic
number at most d = ee(t, c2) or Gi contains two sets S1 and S2 with χ(G[S1]), χ(G[S2]) ≥ c2
and with no edges in Gi between S1 and S2. In the latter case, let a be the smallest index such
that χ(G[{v1, . . . , va} ∩ S1]) ≥ tc, and let b be the smallest index such that χ(G[{v1, . . . , vb} ∩
S2]) ≥ tc. Without loss of generality, assume that a < b. Now let A′ = {v1, . . . , va} ∩ S1 and
B′ = {vb+1, . . . , vn} ∩ S2. Observe that since S1 and S2 have no arcs between them in Gi, which
corresponds to the backedge graph of Ti, then all arcs between A′ and B′ in Ti must go from
A′ to B′. Moreover, we have ~χ(Ti[A

′]) ≤ χ(Gi[A
′]) ≤ ω(Gi[A

′])~χ(Ti[A
′]).4 Since χ(Gi[A

′]) ≥ tc

4This follows from 2.1 in [NSS23], which says that ~χ(T ) ≤ χ(G) ≤ ω(G)~χ(T ) for a backedge graph G of tournament
T .
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and ω(Gi[A
′]) ≤ ω(Gi) ≤ t, we have ~χ(Ti[A

′]) ≥ c. Using the same argument, we also have
~χ(Ti[B

′]) ≥ c. However, by assumption, such sets A′ and B′ do not exist in T . So we conclude that
we are in the first case, in which ~χ(Ti) ≤ χ(Gi) ≤ ee(t, c2).

Thus, we can color the subtournament induced by each color class of DL with ee(t, 2tc) colors,
resulting in a coloring of T with nss(t, c) = ee(t, 2tc) · dense(nss(t− 1, c)) colors.
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A Proof of Theorem 3.1

Let D be a digraph with independence number α, and let X,Y ⊆ V (D). Then the following
inequalities are straightforward.

γ(D[N+[X]]) ≤ |X|,

γ(D[Y ]) ≤ γ(D[X]) + γ(D[Y \X]). (A.1)

Theorem 3.1. There exist functions K and ℓ such that for every pair of integers k, α ≥ 1, ev-
ery digraph D with independence number α and dominating number at least K(α, k) contains a
(k, ℓ(α, k))-cluster.

Proof. Let P (α, k) denote the statement of the theorem for α and k. Our goal is to prove P (α, k)
for all integers α, k ≥ 1. Let us assume that P (α − 1, k) holds for all k ≥ 1. The base case for
this is P (1, k), which is proved in [HLTW19]. Now we fix α and we want to prove P (α, k), which
we will do by induction on k. The base case for this is P (α, 1), which is true since any digraph
with independence number α and domination number at least 1 contains at least one vertex, which
serves as a (1, 1)-cluster. To build intuition, we can also consider the next case, which is P (α, 2).
This is true since any digraph with independence number α and domination number at least α+1
contains a directed cycle of length at most ℓ(α, 2) ≤ 2α + 1, and this cycle requires two colors.5

Now we assume P (α, k − 1) (as well as P (α− 1, k)) and we want to prove P (α, k).

We will follow the proof of Theorem 5 from [HLTW19]. Let us first prove a useful claim. Recall
that No(v) is the set of vertices that form non-edges with v.

Claim 1. If D does not contain a (k, ℓ(α − 1, k))-cluster, then for any vertex v ∈ V (D),

γ(D[No(v)]) ≤ K(α− 1, k).

Proof. The digraph D′ = D[No(v)] has independence number α− 1. By the inductive hypothesis
on α, either D′ has a (k, ℓ(α − 1, k))-cluster or D′ has domination number at most K(α − 1, k).
Thus, γ(D[No(v)]) ≤ K(α− 1, k). ✸

Let D = (V,E) be a digraph with independence number α such that γ(D) ≥ K(α, k), and let
B be a minimum dominating set of D. We will assume that D does not contain a (k, ℓ(α − 1, k))-
cluster, since otherwise, we would be done. Fix

K(α, k) = k(K(α− 1, k) + 1)(K(α, k − 1) + ℓ(α, k − 1) · (K(α − 1, k) + 1) + 1) +K(α, k − 1).

5This follows from the well-known classical theorem that an acyclic digraph has an independent dominating set.
See [Bon03].
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Consider a subset W of B, where

|W | = k(K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1).

From (A.1) and Claim 1, we have

γ(D[V \ (N+[W ] ∪No(W ))]) ≥ γ(D)− γ(D[N+[W ]])− γ(D[No(W )])

≥ γ(D)− |W | − |W |(K(α− 1, k)

≥ K(α, k) − |W |(K(α − 1, k) + 1)

≥ K(α, k − 1).

By applying the induction hypothesis, the digraph D[V \ (N+[W ] ∪No(W ))] contains a (k −
1, ℓ(α, k − 1))-cluster. Call this vertex set A. Note that by construction, A ∩ W = ∅ and A is
complete towards W . Now consider a subset S of W where

|S| = K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1.

We claim that

γ(D[N+(S)]) ≥ K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1). (A.2)

If not, we can choose a dominating set S′ of N+(S), where

|S′| ≤ K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1)− 1.

Note that x dominates S for any x ∈ A, and so S′∪{x} dominates N+[S]. Hence (B \S)∪S′∪{x}
would be a dominating set of D of size less than |B| which contradicts the minimality of B. We
therefore conclude that Inequality (A.2) holds.

Let N ′ = N+(S) \ (N+(A) ∪No(A)). From Claims A.1 and 1 we have

γ(D[N ′]) ≥ γ(D[N+(S)])− γ(D[N+(A)])− γ(D[No(A)])

≥ K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1)− |A|(K(α − 1, k) + 1)

= K(α, k − 1).

Thus, by the induction hypothesis on k, there is a subset As ⊆ N ′ that forms a (k− 1, ℓ(α, k− 1))-
cluster. By construction, AS ∩A = ∅ and AS is complete towards A.

We now construct our subdigraph of D with chromatic number at least k. We consider the set
of vertices A ∪W to which we add the collection AS , for all subsets S ⊆ W of size K(α, k − 1) +
ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1. Call A′ this new vertex set and observe that its size is at most

|A′| ≤ |A|+ |W |+ |AS |

(

|W |

|S|

)

.

So we have

ℓ(α, k) = ℓ(α, k − 1) + k(K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1)

+ ℓ(α, k − 1)

(

k(K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1)

K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1

)

.
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To conclude, it is sufficient to show that χ(A′) ≥ k. Suppose not, and for contradiction, take a
(k − 1)-coloring of A′. Since |W | = k(K(α, k − 1) + ℓ(α, k − 1) · (K(α − 1, k) + 1) + 1) there is a
monochromatic set S in W of size K(α, k − 1) + ℓ(α, k − 1) · (K(α− 1, k) + 1) + 1 (say, colored 1).
Recall that AS is complete to A, and A is complete to S, and note that since χ(A) ≥ k − 1 and
χ(AS) ≥ k − 1, both A and AS have a vertex of each of the k − 1 colors. Hence there are u ∈ A

and w ∈ AS colored 1. Since AS ⊆ N+(S), there is v ∈ S such that (v,w) is an arc of D. We
then obtain the monochromatic triangle (u, v, w) of color 1, a contradiction. Thus, ~χ(D[A′]) ≥ k

implying that A′ is a (k, ℓ(α, k))-cluster in D completing the induction on k.

Since this induction proves the statement P (α, k) holds for any k, it proves the inductive
hypothesis for α. Then, by induction on α we have proven that the theorem is true for any pair of
integers α, k.
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