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Abstract

A k-coloring of a tournament is a partition of its vertices into k acyclic sets. Deciding if a
tournament is 2-colorable is NP-hard. A natural problem, akin to that of coloring a 3-colorable
graph with few colors, is to color a 2-colorable tournament with few colors. This problem does
not seem to have been addressed before, although it is a special case of coloring a 2-colorable 3-
uniform hypergraph with few colors, which is a well-studied problem with super-constant lower
bounds.

We present an efficient decomposition lemma for tournaments and show that it can be used
to design polynomial-time algorithms to color various classes of tournaments with few colors,
including an algorithm to color a 2-colorable tournament with ten colors. For the classes of tour-
naments considered, we complement our upper bounds with strengthened lower bounds, painting
a comprehensive picture of the algorithmic and complexity aspects of coloring tournaments.

1 Introduction

A tournament T = (V,A) is a complete, oriented graph: For each pair of vertices i, j ∈ V , there
is either an arc from i to j or an arc from j to i (but not both). A subset of vertices S ⊆ V
induces the subtournament T [S]. If this subtournament contains no directed cycles, then it is said
to be acyclic. The problem of coloring a tournament is that of partitioning the vertices into the
minimum number of acyclic sets, sometimes referred to as the dichromatic number [Neu82]. Since
a tournament contains a directed cycle if and only if it contains a directed triangle, the problem of
coloring a tournament is equivalent to partitioning the vertices into the minimum number of sets
so that each set does not contain a directed triangle.

Coloring tournaments can be compared to the problem of coloring undirected graphs. For the
latter, deciding if a graph is 2-colorable (i.e., bipartite) is easy, but it is NP-hard to decide if a
graph is 3-colorable. A widely-studied promise problem is that we are given a graph promised to be
3-colorable and the goal is to color it (in polynomial time) with few colors [Wig83, Blu94, KMS98,
KT17]. For tournaments, it is easy to decide whether or not a tournament is 1-colorable (i.e.,
transitive), since this is exactly when the tournament is acyclic. However, deciding if a tournament
is 2-colorable is already NP-hard [CHZ07].
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Graph Type Lower Bound Upper Bound

3-Colorable graphs 5 [BKO19], O(1)∗ [GS20] Õ(n0.19996)[KT17]

k-Colorable graphs, k ≥ 3 2k − 1 [BKO19], O(1)∗[GS20] O(n1− 3
k+1 ) [KMS98]

General graphs n1−ǫ [Has99, Zuc06] O(n(log logn)2(logn)−3) [Hal93]

3-Uniform 2-colorable hypergraphs O(1) [DRS05] Õ(n
1
5 ) [KNS01]

Table 1: Best known lower and upper bounds for various graph coloring problems. All inapprox-
imability results are under the assumption P 6= NP except those denoted by ∗, which are under the
d-To-1 Conjecture [Kho02]. The lower bound should be read as, “It is hard to color a 3-colorable
graph with 5 colors.” The upper bound as, “A 3-colorable graph can be (efficiently) colored with
Õ(n0.19996) colors.”

This suggests the following promise problem: Given a tournament promised to be 2-colorable,
what is the fewest number of colors with which it can be colored in polynomial time? This question
is the starting point for this paper and naturally leads to related problems of determining upper
and lower bounds for coloring various classes of tournaments. For comparison, the complexity
landscape of graph coloring is well studied and we have a general understanding of what it looks
like. (See Table 1.) In contrast, the problem of coloring tournaments has been studied very little
from the algorithmic or complexity perspective. This paper is an effort to address this disparity.

Previous Work. The problem of coloring a 2-colorable tournament with few colors is a special
case of coloring a 2-colorable 3-uniform hypergraph with few colors. Deciding if a 3-uniform hyper-
graph is 2-colorable is NP-hard [Lov73] and more recently it was proved to be NP-hard to color with
any constant number of colors [DRS05]. On the positive side, a 2-colorable 3-uniform hypergraph
can be colored in polynomial time with Õ(n1/5) colors [AKMR96, CF96, KNS01], a result which
uses tools from and is analogous to that of [KMS98] for 3-colorable graphs. Thus, Õ(n1/5) is the
best-known upper bound on the number of colors needed to efficiently color a 2-colorable tourna-
ment. Deciding if a tournament is 2-colorable is NP-hard [CHZ07] and furthermore, deciding if a
tournament is k-colorable for any k ≥ 2 is NP-hard [FGSY19]. It is consistent with these results
that we can, say, efficiently color a 2-colorable tournament with three colors.

From a structural graph theory perspective, the problem of coloring tournaments has been
widely studied due to its connection to the famous Erdős-Hajnal Conjecture [EH89, Chu14], which
has an equivalent formulation in terms of tournaments [APS01]. The latter posits that for any
tournament H, there is a constant ǫH (where 0 < ǫH ≤ 1) such that any H-free tournament on
n vertices has a transitive subtournament of size at least O(nǫH ). [BCC+13] exactly characterize
the tournaments for which ǫH = 1, which they call heroes. Forbidding a hero in a tournament T
actually results in T being colorable with a constant number of colors [BCC+13], which yields a
transitive induced subtournament of linear size. These results are existential and do not provide
an efficient algorithm to color an H-free tournament with a constant number of colors, when H is
some fixed hero.
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Tournament Type Lower Bound Upper Bound

2-Colorable tournaments 2[CHZ07], 3 10

3-Colorable tournaments 5, O(1) ∗ Õ(n0.19996)
k-Colorable tournaments, k ≥ 2 2k − 1, O(1) ∗ 5 · f(k − 1) · g(k)
2-Colorable light tournaments in P? 5
Light tournaments in P? 8

General tournaments n
1
2
−ǫ † n/ logn[EM64]

Table 2: Best known polynomial time inapproximability results and approximation algorithms for
various tournament coloring problems. Previous results are indicated with a citation. All the results
without a citation are established in this paper. Lower bounds are under the assumption P 6= NP

except those marked with a ∗, which hold under the d-To-1 Conjecture [Kho02]. The function
g(k) denotes the number of colors needed to efficiently color a k-colorable graph, while f(k) is the
number of colors needed to efficiently color a k-colorable tournament. The entry indicated by † is
a hardness of approximation result.

Our Results. We consider some basic algorithmic and computational complexity questions on
the subject of coloring tournaments. Our main algorithmic tool, presented in Section 2, is a
decomposition lemma which can be used to obtain efficient algorithms for coloring tournaments
in various cases when certain conditions are met. On a high level, it bears some resemblance
to decompositions previously used to prove bounded dichromatic number in tournaments and in
dense digraphs with forbidden subgraphs [BCC+13, HLNT19]. To apply our decomposition lemma
to 2-colorable tournaments, we use an observation used by [AKMR96, CF96, KNS01] which states
that there is an efficient algorithm to partition a 2-colorable tournament into two tournaments that
are each light. A light tournament is one in which for each arc uv, the set of vertices N(uv) =
{w | uvw forms a directed triangle} is transitive. (Let C3 denote a directed triangle. A light
tournament is H-free where H is the hero (C3, 1, 1).)

In fact, due to this observation and the fact that [BCC+13] showed that light tournaments have
constant dichromatic number, it cannot be NP-hard (unless NP= co-NP) to color a 2-colorable
tournament with O(1) colors. (This does not however immediately imply that there is an efficient
algorithm, since there are many search problems that are believed to be intractable even though
their decision variant is easy, e.g., those in the class TFNP.) Although [BCC+13] did not provide
an efficient algorithm to color a light tournament with a constant number of colors, a careful
modification of their techniques indeed results in a polynomial-time algorithm using around 35
colors to color a light tournament. (This is discussed in Appendix C.)

Like some other lemmas which show that the dichromatic number of a tournament is bounded
(i.e., constant) if the out-neighborhoods of vertices have bounded dichromatic number [HLTW19],
our decomposition lemma also has a local-to-global flavor: If the sets N(uv) can be efficiently
colored with few colors for all arcs uv and if there are two vertices s and t such that the out-
neighborhood of s and the in-neighborhood of t can be efficiently colored with few colors, then our
decomposition lemma yields an efficient algorithm to color the whole tournament with few colors.

In Section 3, we give applications of our algorithmic decomposition lemma to color various
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classes of tournaments. Specifically, we show that 2-colorable tournaments can be efficiently colored
with ten colors. We then use our toolbox to study 3-colorable tournaments. Here we show that
the problem of coloring a 3-colorable tournament has a constant-factor reduction to the problem of
coloring 3-colorable graphs. We also use our tools to show that light tournaments can be efficiently
colored with eight colors, but since this is more technically involved than the other cases, we defer
this to Section 5.

Next, we strengthen the lower bounds by showing in Section 4 that it is NP-hard to color a 2-
colorable tournament with three colors. We then give a reduction from coloring graphs to coloring
tournaments, which implies, for example, that it is hard to color 3-colorable tournaments with
O(1) colors under the d-To-1 Conjecture of Khot [Kho02]. Finally, we show that it is NP-hard to
approximate the number of colors required for a general tournament to within a factor of O(n1/2−ǫ)
for any ǫ > 0. Our results are summarized in Table 2.

1.1 Notation and Preliminaries

Let T = (V,A) be a tournament with vertex set V and arc set A. Sometimes, we use V (T ) to
denote its vertex set and A(T ) to denote its arc set. For S ⊂ V , we use T [S] to denote the
subtournament induced on vertex set S, although we sometimes abuse notation and refer to the
subtournament itself as S. We define uv ∈ A to be an arc directed from u to v. We define N+(v)
to be all w ∈ V such that arc vw ∈ A and N−(v) to be all w ∈ V such that arc wv ∈ A. We let
N+[v] = N+(v)∪{v} and N−[v] = N−(v)∪{v}. For S ⊂ V , we define N+(S) =

⋃
v∈S N+(v), and

we define N−(S), N+[S], N−[S] analogously. We use N±(S) to denote vertices in V \ S that have
at least one in-neighbor and at least one out-neighbor in S. Sometimes we refer to N±(S) of a set
as its mixed neighborhood.

For S,U ⊂ V such that S ∩ U = ∅, we use S ⇒ U to indicate that all arcs between S and U
are directed from S to U . Let C3 denote a directed triangle; usually, we refer to this simply as
a triangle. Define N(uv) ⊂ V to contain all vertices w such that uvw forms the directed triangle
consisting of arcs uv, vw and wu. In other words, N(uv) = N−(u)∩N+(v). For three tournaments
T1, T2 and T3, we use ∆(T1, T2, T3) to denote the tournament resulting from adding all arcs from
T1 to T2, all arcs from T2 to T3 and all arcs from T3 to T1.

A tournament T = (V,A) is k-colorable if there is a partition of V into k vertex-disjoint sets,
V1, V2, . . . , Vk, such that T [Vi] is transitive for all i ∈ {1, . . . , k}. We use ~χ(T ) to denote the
dichromatic number of T (i.e., the minimum number of transitive subtournaments into which V (T )
can be partitioned). Computing the value ~χ(T ) is in general NP-hard [CHZ07]. We therefore use
~χC(T ) to denote the number of colors by which T can be efficiently colored. Our goal is to find
upper and lower bounds on ~χC(T ). When the context is clear, we refer to the dichromatic number
simply as the chromatic number.

We remark that we will always assume that a tournament T which we want to color is strongly
connected; if this were not the case, we can color each strongly connected component separately.
Therefore, each vertex has an out-neighborhood containing at least one vertex.
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2 Efficient Tournament Decomposition for Coloring

We present a decomposition for a tournament that can be computed in polynomial time and yields
an efficient method to color a tournaments with few colors in certain cases.

Definition 2.1. We define a c-vertex chain (vi)0≤i≤k of a tournament T the following way: Let
v0 and vk be a pair of vertices such that ~χC(N

+(v0)∪N−(vk)) ≤ c, and let (vi)0≤i≤k be the vertices
in the shortest directed path from v0 to vk.

Additionally, we define an arc chain (ei)1≤i≤k corresponding to a vertex chain, where ei is
the arc from vi−1 to vi. The main idea behind this decomposition is to build zones that can be
efficiently colored, and such that all arcs between zones at distance more than four (i.e., long arcs)
go backwards.

Definition 2.2. Given a c-vertex chain, a path decomposition of a tournament T is defined as:

• D0 = N+(v0).

• For 1 ≤ i ≤ k, Di = N(ei) \ (∪0≤j≤i−1Dj).

• Dk+1 = N−(vk) \ (∪0≤j≤kDj).

First we prove that this is indeed a decomposition of T .

Lemma 2.3. Let T = (V,A) be a tournament and let (D0, . . . ,Dk+1) be a path decomposition of
T . Then V = ∪0≤i≤k+1Di.

Proof. We will prove this lemma by contradiction: Suppose there is a vertex w ∈ V that does not
belong to any Di. Assume that w does not belong to the vertex chain. Since w is neither in D0

nor in Dk+1, then w ∈ N−(v0) and w ∈ N+(vk). Take the smallest integer i such that w ∈ N+(vi).
There must be one since w ∈ N+(vk). Notice that i ≥ 1 since w /∈ N+(v0), so ei belongs to the arc
chain and w ∈ N(ei). Therefore, w ∈ Di, which is a contradiction.

Now consider the case in which w is in the vertex chain. An arc with both endpoints in the
vertex chain that is not in the arc chain is backwards. Thus, vi ∈ N(ei+2) for all 0 ≤ i ≤ k − 2.
Notice that vk−1 can belong to Dk+1 (if it does not belong to Dj for some j < k + 1). Finally,
vk ∈ N(ek−1).

We remark that, for the sake of simplicity and to more easily visualize the decomposition, it
might be easier to not include the vertices in the vertex chain in the path decomposition. In this
case, these vertices can be colored with two extra colors. Since all arcs not in the arc chain with
both endpoints in the vertex chain go backwards (with respect to the arc chain; otherwise there
would be an even shorter path), we can use two colors so that all forwards arcs (those in the arc
chain) are bicolored.

Lemma 2.4. Let 0 ≤ i, j ≤ k + 1 and let j ≥ i+ 5. For u ∈ Di and w ∈ Dj , we have u ∈ N+(w).
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Proof. We will prove this by contradiction. Suppose j ≥ i + 5 and u ∈ N−(w). Then there is
a path of three arcs from vi to vj−1, namely (vi, u, w, vj−1). (By definition of the decomposition,
u ∈ Di implies u ∈ N+(vi) and w ∈ Dj implies w ∈ N−(vj−1).) This is not possible since by the
definition of the vertex chain as the shortest path, there can be no path between vi and vj−1 with
fewer than four arcs (since (j − 1)− i ≥ (i+ 5− 1)− i = 4).

Lemma 2.5. If T has a c-vertex chain that can be found in polynomial time and if ~χC(N(e)) ≤ c
for each arc e in the corresponding arc chain, then ~χC(T ) ≤ 5c.

Proof. Given a c-vertex chain, we construct a path decomposition. We make five palettes of c colors
each with labels from 0 to 4. We color each Di using the color palette with label i mod 5. Let us
show that we can do this in polynomial time. First, note that the set of colors used is of size c for
every Di. Then, let us consider D0: N

+(v0) can be colored efficiently with c colors by definition of
a vertex chain. Similarly, Dk+1 is a subset of N−(vk) and can thus also be efficiently colored with
c colors. Finally, for every 1 ≤ i ≤ k, Di is a subset of N(ei), which can be colored efficiently with
c colors by the condition of the lemma.

Our goal is now to prove that this is a proper coloring of T . We will do this by showing that all
forward arcs between different Di are bicolored. By Lemma 2.4, there are no forwards arcs between
Di and Dj when j ≥ i+ 5. Furthermore, by the definition of the coloring, no vertex in Di and Dj

can share a color for i+1 ≤ j ≤ i+4. Thus all forward arcs from Di to Dj will be bicolored. Since
every Di is properly colored, and all forward arcs between different Di are bicolored, T is properly
colored.

The next lemma has essentially the same proof as Lemma 2.5.

Lemma 2.6. If T has a c-vertex chain that can be found in polynomial time and if ~χC(N(e)) ≤ d
for each arc e in the arc chain and if c > d, then ~χC(T ) ≤ c+ 4d.

Proof. We find the path decomposition using the c-vertex chain. We can color the set S = D0∪Dk+1

with c colors and the remaining sets Di for 1 ≤ i ≤ k with d colors each. For the last c− d of the
colors used for S, we can remove these vertices from S since these colors will not be used again and
call the remaining vertices in S (colored with the first d colors) S′. For the remaining vertices in S,
we decompose them into D0 := D0∩S′ and Dk+1 := Dk+1∩S′ Now we have sets D0,D1, . . . ,Dk+1

each colored with d colors. We color these sets using five color palettes of d colors each and use the
palette i mod 5 for set Di. By Lemma 2.4, this does not create any monochromatic forward arcs.
Thus, the total number of colors used is (c− d) + 5d = c+ 4d.

3 Algorithms for Coloring Tournaments

In this section, we consider the problems of coloring 2-colorable and 3-colorable tournaments, and
we show how to use our tools to color them with few colors. We also consider the problem of
coloring light tournaments, which is more technical and is therefore deferred to Section 5.
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v0 v1 v2 v3 v4 v5 v6

D0 D1 D2 D3 D4 D5 D6 D7

e0 e1 e2 e3 e4 e5

Figure 1: A path decomposition of T . The red arcs (ei) form a shortest path from v0 to vk, thus all
the arcs not depicted between the vi’s go backward. All the vertices in a given Di are colored from
the color palette indicated by the color of the Di. Notice that because there are no long forward
arcs between the Di’s, all arcs between Di’s that share a color palette are backwards.

3.1 2-Colorable Tournaments

A tournament T = (V,A) is 2-colorable if ~χ(T ) = 2, and a 2-coloring of tournament T is a partition
of V into two vertex sets, V1 and V2, such that T [V1] and T [V2] are each transitive. In this section,
our goal is to prove Theorem 3.1.

Theorem 3.1. Let T be a 2-colorable tournament. Then ~χC(T ) ≤ 10.

We say an arc uv in A is heavy if there exist three vertices a, b, c ∈ N(uv) which form a triangle
abc. If a tournament contains no heavy arcs, then it is light. We will use the following observation.

Observation 3.2. Let T be a 2-colorable tournament. Then T can be partitioned into two light
subtournaments T1 and T2 such that ~χC(T ) ≤ ~χC(T1) + ~χC(T2).

This observation appears in [AKMR96, CF96, KNS01] where it is stated more generally for
2-colorable 3-uniform hypergraphs. We include a proof here for completeness.

Lemma 3.3. In a 2-coloring of a tournament T , each heavy arc must be 2-colored.

Proof. If u and v are both, say, blue, then each vertex in N(uv) would be red, forcing a triangle in
N(uv) to be all red (i.e., monochromatic), which is not possible in a 2-coloring.

Corollary 3.4. In a 2-colorable tournament, the heavy arcs form a bipartite graph.

Now we can prove Observation 3.2.

Proof of Observation 3.2. All heavy arcs can be easily detected. By Corollary 3.4, the set of heavy
arcs forms a bipartite graph. The vertex set of this bipartite graph can be colored with two colors
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(red and blue), such that the tournament induced by each color does not contain a heavy arc.
Then we partition the vertices into two sets one containing all the blue vertices and the other
containing all the red vertices. The uncolored vertices can go in either set. Since neither of these
sets contains any heavy arcs, we can partition the vertices of a 2-colorable tournament into two
light subtournaments.

Theorem 3.1 will follow from Observation 3.2 and the following theorem.

Theorem 3.5. Let T be a 2-colorable light tournament. Then ~χC(T ) ≤ 5.

Our goal it to use Lemma 2.5 to prove Theorem 3.5. In other words, we want to show that a
2-colorable light tournament has a 1-vertex chain. We first prove a useful claim.

Lemma 3.6. Let T be a k-colorable tournament. Then there exist vertices u and w such that
N+(u) ∪N−(w) is (k − 1)-colorable.

Proof. Since T = (V,A) is k-colorable, there exist k transitive sets X1, . . . ,Xk such that V =
∪k
i=1Xi. Then take u to be the vertex in X1 that has only incoming arcs from other vertices in

X1 (i.e., the sink vertex for X1). Similarly, take w to be the vertex in X1 that has only outgoing
arcs to other vertices in X1 (i.e., the source vertex for X1). The out-neighborhood of u and the
in-neighborhood of w are both subsets of V \ X1, and thus so is their union, which is therefore
(k − 1)-colorable.

Now we are ready to prove that we can find a 1-vertex chain.

Lemma 3.7. Let T be a 2-colorable, light tournament. Then T contains a 1-vertex chain that can
be found in polynomial time.

Proof. By Lemma 3.6, there exist u and w such that N+(u) ∪N−(w) is transitive. To find them,
we can test the transitivity of N+(u)∪N−(w) for every pair of vertices in T . Then we simply need
to find a shortest path from u to w, which can be done in polynomial time. Let k denote the length
of the path, and define v0 = u, vk = w, and (vi)1≤i≤k−1 the rest of the vertices in the path.

The proof of Theorem 3.5 follows from Lemma 3.7, Lemma 2.5 and the fact that ~χC(N(e)) ≤ 1
for every arc e in a light tournament.

Certificates of Non-2-Colorability In Section 3.1, we presented an algorithm to color a 2-
colorable tournament with ten colors. Suppose we run this algorithm on an arbitrary tournament
T (e.g., one that is not 2-colorable). Then our algorithm will either color T with ten colors or it will
produce at least one certificate that T is not 2-colorable. A certificate will have the following form:
either a) there is an odd cycle of heavy arcs in T , or b) for every ordered pair of vertices (u, v),
the subtournament T [N+(u)∪N−(v)] is not transitive. In particular, an 11-chromatic tournament
must contain such a certificate.
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3.2 3-Colorable Tournaments

Coloring 3-colorable tournaments turns out to be closely related to coloring 3-colorable graphs. This
seems surprising since the techniques for 3-colorable graphs were applied to coloring 2-colorable 3-
uniform hypergraphs, which are a generalization of 2-colorable tournaments.

We will first show that we can adapt ideas of [Wig83] and [Blu94] to the problem of coloring 3-
colorable tournaments by using our algorithm for coloring 2-colorable tournaments with ten colors
as a subroutine.

Lemma 3.8. A 3-colorable tournament can be colored with O(
√
n) colors in polynomial time.

Proof. Let T = (V,A) be a 3-colorable tournament. Notice that T has at least three vertices each
of whose out-neighborhoods is 2-colorable. To see this, consider any proper 3-coloring of T . Each
color spans a transitive subtournament and each transitive subtournament has a sink vertex that
has outgoing arcs only towards the other two colors.

For any vertex, if its out-neighborhood is 2-colorable, we can color its out-neighborhood with
10 colors by Theorem 3.1. So we can try to run the algorithm for the out-neighborhood of every
vertex, and the algorithm will successfully produce a 10-coloring of the out-neighborhood of at least
three vertices.

Therefore, if the minimum outdegree is at least
√
n, we find a transitive set of size at least√

n/10. On the other hand, if the minimum outdegree is smaller than
√
n, we will make progress

another way. In this case, let u be a vertex with outdegree smaller than
√
n. Then, we add u to a

set S, and continue the algorithm on the subtournament of T induced on V \N+[u]. We continue
this until we find a transitive subtournament of size at least

√
n/20 or until we have removed half

the vertices. In the first case, we will have found a transitive set of size Ω(
√
n), and in the second

case, the set S will be transitive, and also of size Ω(
√
n).

In conclusion, since we can find a transitive set of size Ω(
√
n) in polynomial time, we can repeat

the procedure recursively to find a coloring with O(
√
n) colors in polynomial time (see [Blu94] for

example).

We can also use the decomposition of Section 2 to get a coloring with fewer colors based on a
reduction to coloring 3-colorable graphs.

Theorem 3.9. If we can efficiently color a 3-colorable graph G with k colors, then we can efficiently
color a 3-colorable tournament with 50k colors.

Proof. Let T = (V,A) be a 3-colorable tournament. For every arc e ∈ A, try coloring N(e) with
10 colors using Theorem 3.1. If the algorithm fails, the neighborhood of the edge is not 2-colorable,
and thus the edge is not monochromatic in any 3-coloring. Let F ⊂ E denote the set of arcs whose
neighborhoods cannot be colored with 10 colors using our algorithm. Ignore the direction of the
arcs in F and consider the graph G = (V, F ). This graph must be 3-colorable, since no arc in F is
monochromatic in any 3-coloring of T .

Now let us show that from a coloring of G with k colors, we can obtain a coloring of T with 50k
colors. Consider a coloring of the graph G = (V, F ) and let Vi be the vertices colored with color i
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in this coloring. Consider the induced subtournament T ′ = T [Vi]; it has no arc in F and thus the
neighborhood of every arc in this tournament can be colored efficiently with 10 colors. Furthermore,
by Lemma 3.6 and Theorem 3.1, there are vertices u and v in T ′ such that N+

T ′(u) ∪ N−
T ′(v) is

efficiently 10-colorable. So by Lemma 2.5, we can efficiently color T ′ with 50 colors. We can do
this for the subtournament T [Vi] for each of the i colors used to color G.

Combining this Lemma with approximation algorithm [KT17], which colors a 3-colorable graph

with fewer than n
1

5 colors, we obtain the same asymptotic bound for 3-colorable tournaments.

Corollary 3.10. Let T be a 3-colorable tournament on n vertices. Then, ~χC(T ) ≤ O(n0.19996).

We can extend Theorem 3.9 to a more general case.

Lemma 3.11. Let f and g be functions such that we can efficiently color k-colorable graphs (respec-
tively, k-colorable tournaments) with g(k) (respectively, f(k)) colors. Then f(k) ≤ 5 ·f(k−1) ·g(k).

Proof. We use the same reduction as in the proof of Theorem 3.9, but now F is the set of arcs
whose neighborhoods cannot be efficiently f(k − 1)-colored. Then each Vi in G is colored with
5 · f(k − 1) colors. So we need a total of 5 · f(k − 1) · g(k) colors.

4 Hardness of Approximate Coloring in Tournaments

In this section, we examine the hardness of approximate coloring of tournaments. [CHZ07] showed
that deciding if a tournament can be 2-colored is NP-hard. For completeness, we provide a simplified
(though similar) proof of this result in Appendix A. Later, [FGSY19] proved that for any k, it is
NP-hard to decide if a tournament is k-colorable.

We will first improve upon these NP-hardness results and then show hardness of coloring k-
colorable tournaments for k ≥ 3 with O(1) colors under the d-To-1 conjecture. The d-To-1 conjec-
ture was first introduced by Khot alongside the famous Unique Games conjecture [Kho02], and has
since been used to show hardness of coloring 3-colorable graphs with O(1) colors [GS20].

First notice that the search problem must be at least as hard as its decision version.

Observation 4.1. Let k < ℓ be any two constants. If we can color k-colorable tournaments with ℓ
colors, then we can distinguish k-colorable tournaments from tournaments with chromatic number
at least ℓ+ 1.

This comes immediately from the fact that if we could ℓ-color all k-colorable tournaments,
then we could see that they do not have chromatic number ℓ + 1 or greater. The hardness of
distinguishing between chromatic number k and greater or equal to ℓ + 1 is therefore commonly
established as a way of implying the hardness of coloring k-colorable graphs with ℓ colors (see for
example [BKO19]).
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Figure 2: Construction of T from a 3-uniform hypergraph H. The edges in red (going down) were
represented only for vertex v1, but there is an arc from any vertex v′a,i towards all vertices va,j for
any j. The remaining arcs all go from the vertices va,i towards the vertices vb,j for a 6= b (they go
up).

4.1 NP-Hardness of Approximate Coloring of k-Colorable Tournaments

It was shown previously that it is NP-hard to color a 2-colorable tournament with 2 colors [CHZ07,
FGSY19]. We prove a stronger theorem, that it is NP-hard to 3-color a 2-colorable tournament.

Theorem 4.2. For a tournament T , it is NP-hard to distinguish between the case in which ~χ(T ) = 2
and the case in which ~χ(T ) ≥ 4.

Proof. Let H be a 3-uniform hypergraph. In [FGSY19] and [CHZ07], they show how to construct
a tournament G such that G is 2-colorable iff H is 2-colorable. We will build a new tournament
T = (V,A) such that if H is 2-colorable, T is also 2-colorable, and if H has chromatic number at
least 7, then T has chromatic number at least 4. (Notice that it is NP-hard to color a 3-uniform
2-colorable hypergraph with c colors for any constant c [DRS05].)

We will start by defining a subtournament T1 = (V1, A1) of T . Given an enumeration of the
hyperedges of H, ei = (va, vb, vc), we will add three vertices va,i, vb,i and vc,i to V1, and add to A1

the arcs (va,i, vb,i), (vb,i, vc,i) and (vc,i, va,i) such that these three vertices form a directed triangle.
We then add the arcs from all the vertices va,i towards all the vertices vb,j for any a, b, i, j with
i < j. We make a copy of T1, that we call T2 = (V2, A2), and add both to T . We then add the
tournament G, and orient all arcs from vertices in V1 towards vertices of G, and all arcs from
vertices of G towards vertices in V2. The only arcs we still need to orient are those between V1 and
V2. For this, we look at the vertices of H from which the vertices of V2 are derived; for va,i ∈ V1

and v′b,j ∈ V2, we add an arc from v′b,j to va,i iff a = b (i.e., if they are derived from the same vertex
of H), and we add an arc from va,i to v′b,j otherwise. This completes the definition of T .

We will now establish that if H is 2-colorable, so is T . Given a 2-coloring of H, give all the
vertices of V1 the same color as the vertex of H they are derived from, and those in V2 the opposite
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color of the vertex of H they are derived from. Finally color G with the same 2 colors. Then, any
arc that goes from V2 to V1 will be 2-colored, and since all arcs are oriented from V1 towards G
and from G towards V2, there can only be monochromatic triangles inside V1, V2 or G. However,
G is properly 2-colored and thus does not have any monochromatic triangles. Furthermore, every
triangle in V1 and V2 represents a hyperedge of H and must therefore contain two vertices of
different colors.

It remains to show that if H has chromatic number at least 7, T has chromatic number at least
4. We will establish this by contradiction. Namely, we show that if T has a proper 3-coloring C,
then we can construct a proper 6-coloring of H.

For every vertex va of H, consider the set of vertices Sa = {va,i | ∀i, va,i ∈ V1} and Qa =
{va,i | ∀i, va,i ∈ V2}. A key property of our construction is that if H is not 2-colorable, then in
any proper 3-coloring of T , either the set Sa or the set Qa must be monochromatic. To see this,
notice that if any vertex of Sa has the same color as any vertex of Qa, then they will form a
monochromatic triangle with a third vertex from G that has the same color (since G is colored
with at least 3 colors). So if Sa and Qa each use at least 2 out of 3 colors, then at least one color
appears in both Sa and Qa resulting in a monochromatic triangle.

Next we define a coloring CH of H as follows. If Sa is monochromatic, then set CH(va) = C(Sa).
Otherwise, if Qa is monochromatic, then set CH(va) = C(Qa) + 3. Now take any hyperedge
(va, vb, vc) of H; if the three sets Sa, Sb and Sc are monochromatic, then since there is a directed
triangle (va,j , vb,j , vc,j) in T1 for some j, the three vertices cannot have the same color in C, so
they also do not all have the same color in CH . If none of the three sets Sa, Sb and Sc are
monochromatic, then the sets Qa, Qb and Qc are each monochromatic, so the same argument
applies. Finally, without loss of generality we can suppose Sa is monochromatic but not Sb. Then
va and vb do not have the same color in CH by definition. Therefore, by case analysis, no hyperedge
of H can be monochromatic, and thus CH is a proper 6-coloring of H.

Our goal is now to extend this hardness result to k-colorable tournaments. To do this, we will
use an iterative construction presented in the following claims.

Claim 4.3. Let a, b, c, d, e, ℓ be positive integers such that e < c + d. Let H be a 3-uniform
hypergraph, and let R1, R2 and R3 be three tournaments such that if χ(H) = 2, then ~χ(R1) = a,
~χ(R2) = b and ~χ(R3) = a+ b, and if χ(H) ≥ ℓ, then ~χ(R1) ≥ c, ~χ(R2) ≥ d and ~χ(R3) ≥ e.

Then we can construct a tournament R′ with chromatic number ~χ(R′) = a+ b if χ(H) = 2, and
~χ(R′) ≥ e+ 1 if χ(H) ≥ ℓ.

Proof. Let H be a hypergraph and let R1, R2 and R3 be three tournaments that satisfy the
conditions. Let R′ = ∆(R1, R2, R3). Now we want to show that if χ(H) = 2, ~χ(R′) = a+ b. Simply
color R1 with a colors, R2 with a new set of b colors, and R3 with the same set of a + b colors.
These dicolorings will be proper since χ(H) = 2. The dicoloring of R′ is proper since there is no
monochromatic triangle inside R1, R2 or R3, and any triangle containing vertices from R1 and R2

will have at least two different colors.

Next we want to show that if χ(H) ≥ ℓ, ~χ(R′) ≥ e+1. Suppose R′ has a coloring with e colors.
Then, since c+ d > e, R1 and R2 must share at least one color. Furthermore, all e colors are used
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in R3 by assumption. So there must be a monochromatic triangle since every triplet (u, v, w) with
u ∈ R1, v ∈ R2, w ∈ R3 forms a directed triangle. Thus, ~χ(R′) ≥ e+ 1.

Claim 4.4. Let a, b, c, d, ℓ be positive integers. Let H be a 3-uniform hypergraph, and let R1 and
R2 be two tournaments such that if χ(H) = 2, then ~χ(R1) = a and ~χ(R2) = b, and if χ(H) ≥ ℓ,
then ~χ(R1) ≥ c, ~χ(R2) ≥ d.

Then there exists a tournament R′ with ~χ(R′) = a+b if χ(H) = 2 and ~χ(R′) ≥ c+d if χ(H) ≥ ℓ.

Proof. We will prove by induction on k with a+ b ≤ k ≤ c+ d, that there exists a tournament R′
k

with ~χ(R′
k) = a+ b if χ(H) = 2, and ~χ(R′

k) ≥ c+ d if χ(H) ≥ ℓ.

Initialization: For k = a+ b, define R′
a+b to be any tournament with chromatic number a+ b.

Induction: Suppose that for a fixed k < c + d, there is a tournament R′
k verifiying the

conditions, then let us show that there is a tournament R′
k+1 that verifies these same conditions

for k+1. We apply Claim 4.3 where R1 and R2 from both claims are the same, and R3 is R′
k. This

proves the existence of a tournament such that ~χ(R′
k) = a + b if χ(H) = 2, and ~χ(R′

k) ≥ c + d if
χ(H) ≥ ℓ.

Now we simply define R′ = R′
c+d.

We remark that as every iteration of the construction can be done in polynomial time, and
there are at most c+ d iterations, R′ can be constructed in polynomial time and has size |V (R′)| ≤
(c+ d) · (|V (R1)|+ |V (R2)|) + |V (Ra+b)|.

This gadget R′ will allow us to prove that it is NP-hard to color a k-colorable tournament with
2k − 1 colors.

Theorem 4.5. For a tournament T , it is NP-hard to distinguish between the case in which ~χ(T ) = k
and the case in which ~χ(T ) ≥ 2k.

Proof. Given a 3-uniform hypergraph H, we will prove by strong induction on k that for every k,
there exists a tournament Tk of size polynomial in |V (H)| such that if χ(H) = 2 then ~χ(Tk) = k,
and if χ(H) ≥ 7 then ~χ(Tk) ≥ 2k.

Initialization: For k = 2, we refer to the tournament constructed in the proof of Theorem 4.2.

For k = 3, let T3 = ∆(T2, T2, T2). If χ(H) = 2, coloring the first copy with colors 1, 2, the
second with colors 2 and 3, and the third with colors 3 and 1 yields a 3-coloring. This tournament
is also not 2-colorable since in any 2-coloring, all copies of T2 must use the same two colors, and
thus there would be a monochromatic directed triangle.

If χ(H) ≥ 7, T2 has chromatic number at least 4. Therefore, in any 5-coloring, two colors must
be used in every copy of T2, which would lead to a monochromatic directed triangle. Therefore,
~χ(T3) ≥ 6.

Induction hypothesis: For every m ≤ k, there exists a tournament Tm of size polynomial in
|V (H)| such that if χ(H) = 2, ~χ(Tm) = m, and if χ(H) ≥ 7, χ(Tm) ≥ 2m.

Induction: Let us show that there exists a tournament Tk+1 of size polynomial in |V (H)| such
that if χ(H) = 2, ~χ(T ) = k + 1, and if χ(H) ≥ 7, ~χ(G) ≥ 2(k + 1).
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Take the two tournaments T⌊k+1

2
⌋, T⌈k+1

2
⌉ obtained from the 3-uniform hypergraph H. These

obey the conditions of Claim 4.4, thus there exists a tournament, that we call Tk+1, such that if
χ(H) = 2, ~χ(Tk+1) = k + 1, and if χ(H) ≥ 7, ~χ(Tk+1) ≥ 2(⌈k+1

2 ⌉+ ⌊k+1
2 ⌋) = 2(k + 1).

This concludes the induction. It immediately follows that it is NP-hard to distinguish between
tournaments with chromatic number 2 and tournaments with chromatic number 4, as being able to
do so would allow us to distinguish between 3-uniform hypergraphs with chromatic number 2, and
3-uniform hypergraphs with chromatic number at least 7, which is NP-hard [DRS05, Bha18].

4.2 Reduction from Coloring Graphs to Coloring Tournaments

In Section 3.2, we showed that if we can color a 3-colorable graph with k colors, then we can color a
3-colorable tournament with 50k colors. In this section, we give a reduction in the other direction.
Specifically, we show that the problem of coloring a k-colorable graph with ℓ colors is reducible
to the problem of coloring a k-colorable tournament with ℓ colors. A corollary of this reduction
is hardness of coloring tournaments under the d-To-1 Conjecture of Khot [Kho02]; [GS20] showed
that assuming the d-To-1 Conjecture, it is hard to color 3-colorable graphs with O(1) colors, and
using our reduction, we can extend this hardness to tournaments.

Theorem 4.6. Given any two constants k, ℓ ≥ 3, if we can efficiently distinguish k-colorable
tournaments and tournaments with chromatic number at least ℓ, then we can efficiently distinguish
k-colorable graphs and graphs with chromatic number at least ℓ.

We start by proving the following lemma that presents the building block of the reduction.

Lemma 4.7. Let G = (VG, EG) be a graph and T = (VT , AT ) a tournament such that ~χ(T ) = k
when χ(G) = k, and ~χ(T ) ≥ min(χ(G), c) when χ(G) > k. We can build a new tournament
U = (VU , AU ) such that ~χ(U) = k when χ(G) = k, and ~χ(U) ≥ min(χ(G), c + 1) otherwise.

Proof. Let nG = |VG| and let (Ti)1≤i≤nG−1 be copies of T . Let Ti = (Vi, Ai). Then VU :=
(∪1≤i≤nG−1Vi)∪VG. Fix an arbitrary ordering of the vertices in VG. To build AU , add the arc from
vj to vi if (vi, vj) ∈ EG, and the arc from vi to vj otherwise (i.e., if (vi, vj) /∈ EG). The resulting
tournament induced on the vertices of VG is said to have G as a backedge graph. Next we add all
the arcs from vi to all vertices of Tj for every i ≤ j, and the arcs from every vertex of Ti to vj for
all i < j. Finally, we add the arcs from any vertex of Ti to any vertex of Tj for every i < j. This
concludes the construction of U , which is depicted in Figure 3.

Suppose χ(G) = k. Then let us show that ~χ(U) = k. In this case, ~χ(T ) = k by assumption.
We take a k-coloring of G and a k-coloring of T and color the vertices in U (i.e., in VG and in Vi

for all 1 ≤ i ≤ nG − 1) according to these colorings. Notice that all arcs that are backwards with
respect to the order v1 → T1 → v2 → ... → vi → Ti → ... → T|VG|−1 → v|VG| are bicolored. To
see this, observe that arcs from vj to vi for j > i belong to EG and are therefore bicolored, and
by construction, there are no arcs from vj to Ti nor from Tj to Ti for j > i. Thus, there can only
possibly be monochromatic triangles within Ti, but these sets are properly colored. Therefore, this
is a proper dicoloring of the tournament U and ~χ(U) = k.
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v1 v2 v3 v4 v5

T1 T2 T3 T4

Figure 3: Construction of the tournament U from a graph G on five vertices. The dashed red edges
are those present in G and all go backwards, whereas the remaining edges are blue and go forwards.

Let us now prove that when χ(G) > k, we have ~χ(U) ≥ min{χ(G), c + 1}. By assumption, we
have ~χ(T ) ≥ min{χ(G), c} in this case. Thus, if c = χ(G), then the claim is true, since T is a
subtournament of U . So let us consider the case in which c < χ(G). Then given a coloring of U with
c colors, there must be a monochromatic edge (vi, vj) in G. Assuming without loss of generality
that i < j, there is a monochromatic arc from vj to vi in U . Furthermore, since ~χ(T ) ≥ c, there
must be some vertex of Ti that has the same color as vi and vj . Since all vertices in Ti form a
directed triangle with vi and vj , this means that there is a monochromatic triangle in U , which is
a contradiction.

We can then prove Theorem 4.6 by a simple induction.

Proof of Theorem 4.6. Let G = (VG, EG) be a graph and let ℓ ≥ 3 be a constant. For all c ≥ k,
let us build a tournament Tc = (VTc

, ATc
) by induction such that if χ(G) = k, then ~χ(Tc) = k, and

otherwise if χ(G) ≥ ℓ, then ~χ(Tc) ≥ min{χ(G), c}.
Initialization: For c = k, any k-colorable tournament satisfies the conditions.

Induction: Suppose there is a tournament Tc satisfying the conditions for a constant c. Let
us show that there is a tournament Tc+1 that satisfies these same conditions for c+1. This follows
from Lemma 4.7 where Tc is T , and Tc+1 is U .

Consider the tournament Tℓ; it is of size |VTℓ
| = O(|VG|2

ℓ

), which is polynomial for fixed ℓ.
Furthermore, if χ(G) = k then ~χ(Tℓ) = k, and otherwise ~χ(Tℓ) ≥ min{χ(G), ℓ}, thus if we can
efficiently decide if Tℓ has chromatic number k or at least ℓ, we can also efficiently decide if G has
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chromatic number k or at least ℓ.

Using the hardness of coloring 3-colorable graphs with a constant number of colors under the
d-To-1 conjecture [GS20], we get equivalent hardness for coloring 3-colorable tournaments, and
thus k-colorable tournaments for k ≥ 3 (since any 3-colorable tournament is also k-colorable when
k ≥ 3).

Corollary 4.8. Let 3 ≤ k < ℓ be any two constants. Then if the d-To-1 conjecture is true, we
cannot distinguish between tournaments with chromatic number k and tournaments with chromatic
number at least ℓ.

Notice that if stronger hardness (for example constant hardness under the P 6= NP assump-
tion) were established for approximate coloring of 3-colorable graphs, then this reduction would
provide stronger hardness results for 3-colorable tournaments (and thereby also for k-colorable
tournaments). This would hold up to constant hardness, after which the blowup of the size of the
tournament in the construction would be more then polynomial.

Finally, we consider the hardness of the problem of coloring general tournaments. Coloring
digon-free digraphs has been shown to be NP-hard to approximate within a factor of n1/2−ǫ [FHS19].
This proof can easily be extended to the case of tournaments, which provides the following theorem.

Theorem 4.9. Given any arbitrarily small constant ǫ > 0, it is NP-hard to approximate the
chromatic number of tournaments within a factor of n1/2−ǫ.

The proof of this Theorem is given in Appendix B.

5 Light Tournaments

Light tournaments are exactly those which do not contain the hero ∆(1, 1, C3). [BCC+13] proved
that light tournaments have constant chromatic number, but they did not state a precise constant,
and their proof is not algorithmic. A careful modification of their approach can be used to give an
algorithmic proof that this constant is around 35. Details are provided in Appendix C, since they
could be useful in finding algorithms for tournaments with other forbidden heroes.

In this section, our goal is to prove the following theorem.

Theorem 5.1. Let T be a light tournament. Then ~χC(T ) ≤ 8.

Lemma 5.2. Let T be a light tournament. Then we can find u, v such that:

(i) ~χC(N
+(u)) ≤ 3,

(ii) ~χC(N
−(v)) ≤ 3, and

(iii) ~χC(N
−(v) ∪N+(u)) ≤ 5.

Assuming Lemma 5.2, we can prove Theorem 5.1.
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Proof of Theorem 5.1. If the shortest path from u to v has length at least four, then notice that all
arcs between N+(u) and N−(v) go from N−(v) to N+(u). Then by items (i) and (ii) from Lemma
5.2, we have ~χC(N

−(v) ∪ N+(u)) ≤ 3, so T has a 3-vertex chain. By Lemma 2.6, we can color T
with seven colors.

Next, we consider the case in which the shortest path from u to v has length at most three. By
item (iii) from Lemma 5.2, we have ~χC(N

−(v) ∪N+(u)) ≤ 5. Moreover, each remaining vertex is
in N(e) for some edge e on the shortest path. So in total, we use at most eight colors.

Now it remains to prove Lemma 5.2. We will start by establishing some structural claims about
light tournaments which are adapted from [BCC+13]. For the rest of this section, T = (V,A) will
denote a light tournament. Note that we do not assume that T is necessarily 2-colorable. Recall
that a C3 is a directed triangle.

Definition 5.3. Define a C3-chain of length ℓ in T to be a set of ℓ vertex disjoint C3’s, X =
(X1,X2,X3, . . . ,Xℓ), such that for each i ∈ {1, . . . , ℓ− 1}, Xi ⇒ Xi+1.

A backwards arc in a C3-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

Lemma 5.4. A C3-chain has no backwards arcs.

This follows from the following claim.

Claim 5.5. If X = (X1,X2, . . . ,Xℓ) is a C3-chain of length ℓ, then Xi ⇒ Xj for i < j, where
1 ≤ i < j ≤ ℓ.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a C3-chain, we have all
arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2 to Xi since otherwise triangle Xi+1

would appear in the neighborhood N(uv), meaning that uv is heavy, which is a contradiction. This
implies that all arcs go from Xi to Xi+2 (since T is a tournament). Now suppose j > i+2. If there
is a back arc uv from u ∈ Xj to v ∈ Xi, then uv is a heavy arc, because Xj−1 would be in N(uv)
since by induction we have all arcs from Xi to Xj−1 and from Xj−1 to Xj. ✸

Let us fix X = (X1,X2, . . . ,Xℓ) to be a C3-chain in T , and let W = V (T ) \ V (X). Initially, X
can be of any length ℓ ≥ 1.

Claim 5.6. For w ∈ W :

1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.

2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.

Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is a heavy arc.
Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for j < i, then wu is a heavy arc.
✸
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We partition the vertices in W into zones (Z0, Z1, . . . , Zℓ) using the following criteria. For
w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned to zone Zi. If there is no
such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in H. Let C ⊆ W be the set of
clear vertices.

Claim 5.7. If C is not transitive, we can extend X.

Proof. If the set Zi ∩C contains a triangle, then we can extend X by adding a new triangle to the
chain between Xi and Xi+1.

If there is no i such that Zi ∩ C contains a triangle, then we claim that C is transitive. This
follows from the observation that there are no backwards arcs from Zj ∩ C to Zi ∩ C for i < j.
Indeed, should such an arc uv from Zj ∩ C to Zi ∩ C exist, then Xi+1 ⊂ N(uv), so uv would be
heavy. ✸

We say that X is a maximal C3-chain if C is transitive. Let us also now define the unclear
vertices U , where U = W \ C. In a maximal C3-chain X = (X1, . . . ,Xℓ), notice that for a vertex
a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). (This is because if a vertex u ∈ N−(a) has u ⇒ Xi, then
u would be a clear vertex.)

Claim 5.8. We can efficiently find two directed triangles X1 = abc and Xℓ = xyz such that the set
S = {v | v ⇒ X1 or Xℓ ⇒ v} is transitive.

Proof. Find a maximal C3-chain X and let ℓ be the length of this chain. Let abc = X1 and
xyz = Xℓ. The set of vertices {v | v ⇒ X1 or Xℓ ⇒ v} is a subset of C and is therefore transitive.
✸

Claim 5.9. Let xyz be a directed triangle. Then ~χC(N
±({x, y, z})) ≤ 3.

Proof. Each vertex v ∈ N±({x, y, z}) belongs to N(xy), N(yz) or N(zx). Since each of these sets
is transitive, we conclude that N±({x, y, z}) can be colored with three colors. ✸

We can now prove Lemma 5.2.

Proof of Lemma 5.2. Recall that for a vertex a ∈ X1, we have N−(a)∩U ⊆ N±(X1). If X1 = abc,
notice that for v ∈ N−(a) ∩ U , v /∈ N(ca). Thus, N−(a) ∩ U ⊆ N(ab) ∪N(bc), which is efficiently
2-colorable. Making an analogous argument for Xℓ = xyz and N+(z) ∩ U , we conclude that
(N+(z)∪N−(a))∩U is efficiently 4-colorable. The rest of the vertices in N+(z)∪N−(a) belong to
the set S defined in Claim 5.8 and can be colored with one color. Therefore ~χC(N

+(z)∪N−(a)) ≤ 5.
Moreover, we have ~χC(N

+(z)) ≤ 3 and ~χC(N
−(a)) ≤ 3.

The approach in this section can be extended to bound the chromatic number of a more general
subclass of heroes. See Appendix D for details.

It is a natural question to determine upper and lower bounds on the chromatic number of
light tournaments (e.g., see Problem 1 in [MW11]). Theorem 5.1 gives an upper bound on the
chromatic number of a light tournament. On the other hand, there exist light tournaments that
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Figure 4: 3-chromatic light tournament.

are not 2-colorable. An example of such a tournament is the Paley tournament P7, one of the four
3-chromatic tournaments on seven vertices [NL94]. This tournament is represented in Figure 4. We
have not found any light tournament with chromatic number at least four. The Paley tournament
P11 is the unique 4-chromatic tournament on 11 vertices [NL94]. A light 4-chromatic tournament
would have to have at least 13 vertices as [BBKP22] proved that any 4-chromatic tournament on
12 vertices must contain an induced copy of P11 and P11 is not light.

Regarding the complexity of coloring a light tournament, notice that if we could show that it is
hard to color a 2-colorable tournament with four colors (rather than three as per Theorem 4.2), this
would imply hardness of coloring a 2-colorable light tournament with two colors by Observation
3.2. Indeed, we have no hardness results for coloring light tournaments. Any upper bound of c
on their chromatic number would imply that it cannot be NP-hard to color them with c colors,
because the property of being light is checkable in polynomial time (unlike the property of being,
say, 2-colorable).

6 Conclusion

There are many open questions related to the theorems we have presented since all the rows in
Table 2 present gaps between the upper and lower bounds. One example is light tournaments,
which we discussed at the end of Section 5.

Another interesting topic is the relation of coloring tournaments and the feedback vertex set
(FVS) problem on tournaments. There is an elegant 2-approximation for this problem [LMM+21].
Notice that Theorem 3.1 implies that in a 2-colorable tournament, we can efficiently find a FVS
of size at most 9n/10. In contrast, the algorithm in [LMM+21] could just return the whole vertex
set if the two transitive sets were of roughly equal size. Analogous to a well-studied question for
general graphs [DKPS10, KS14], one can ask what is the largest transitive induced subtournament
that one can efficiently find in a 2-colorable tournament? Is it larger than n/10?

Finally, we remark that an implication of Theorem 3.9 is that proving any hardness of coloring
3-colorable tournaments would then provide hardness of coloring 3-colorable graphs with 50 times
fewer colors. Since it has taken around 20 years to go from proving NP-hardness of coloring a
3-colorable graph with four colors [KLS00, GK00, GK04] to NP-hardness of coloring a 3-colorable
graph with five colors [BKO19], it would be interesting to see if we can prove hardness of coloring
3-colorable tournaments for a constant larger than five (at least five is shown in Theorem 4.5), or
perhaps show that the two problems are actually equivalent.
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[APS01] Noga Alon, János Pach, and József Solymosi. Ramsey-type theorems with forbidden
subgraphs. Combinatorica, 21(2):155–170, 2001.

[BBKP22] Thomas Bellitto, Nicolas Bousquet, Adam Kabela, and Théo Pierron. The smallest
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Figure 5: Construction of T from a 3-uniform hypergraph H. There is a downward arc between v′b
and all vertices vb,i for every b, i. These are the colored arcs in the figure. All remaining arcs all go
from the vertices va,i towards the vertices v′b for a 6= b (they go up).

A NP-Hardness of Deciding 2-Colorability

For completeness, we provide a proof of the NP-hardness of coloring 2-colorable tournaments with
two colors. This proof is strongly inspired by the proof of [CHZ07].

Lemma A.1. It is NP-hard to decide if a tournament has chromatic number two.

Proof. We will reduce this problem to the problem of deciding 2-colorability of 3-uniform hyper-
graphs, which is known to be NP-hard [DRS05].

Let H = (VH , EH) be a 3-uniform hypergraph. We now build a tournament T = (V,A) such
that T is 2-colorable iff H is 2-colorable.

We will start by defining a subtournament T1 = (V1, A1) of T . Given an enumeration of the
hyperedges of H, ei = (va, vb, vc), we will add three vertices va,i, vb,i and vc,i to V1, and add to A1

the arcs (va,i, vb,i), (vb,i, vc,i) and (vc,i, va,i) such that these three vertices form a directed triangle.
We then add the arcs from all the vertices va,i towards all the vertices vb,j for any a, b, i, j with
i < j. We now define a new subtournament T2 = (V2, A2) made up of three vertices that form a
directed triangle. Finally, we define a last subtournament T3 = (V3, A3): V3 := VH , and T3 forms
a transitive set on its vertex set.

Then add T1, T2 and T3 to T . Orient all arcs from vertices in V1 towards vertices of V2 and
all arcs from vertices of V2 towards vertices of V3. The only arcs we still need to orient are those
between V1 and V3. For this, we look at the vertices of H from which the vertices of V1 and V3 are
derived; for va,i ∈ V1 and v′b ∈ V3, we add an arc from v′b to va,i iff a = b (i.e., if they are derived
from the same vertex of H), and we add an arc from va,i to v′b otherwise. This completes the
definition of T . Figure 5 gives an example of this construction for a hypergraph with five vertices
and four hyperedges.

We will now establish that if H is 2-colorable, so is T . Given a 2-coloring of H, give all the
vertices of V1 the same color as the vertex of H they are derived from, and those in V3 the opposite
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color of the vertex of H they are derived from. Finally color T2 properly with the same 2 colors.
Then, any arc that goes from V3 to V1 will be 2-colored, and since all arcs are oriented from V1

towards V2 and from V2 towards V3, there can only be monochromatic triangles inside V1, V2 or V3.
However, V2 is a bicolored triangle, and, every triangle in V1 and V3 represents a hyperedge of H
and must therefore contain two vertices of different colors.

It remains to show that if H has chromatic number at least 3, T has chromatic number at least
3. We will establish this by contradiction: We show that if T has a proper 2-coloring C, then we
can construct a proper 2-coloring of H.

We define a coloring CH of H by assigning to every vertex va ∈ VH the same color as its
corresponding vertex v′a ∈ V3 has in C. Let us show that CH is a proper 2-coloring of H. Notice
that in a proper 2-coloring of G, va,i ∈ V1 must have the opposite color of v′a ∈ V3, for any a, i. If
it were not the case they would form a directed triangle with the vertex in V2 of the same color,
since T2 is a directed triangle and must therefore be bicolored. Now suppose some hyperedge
ei = (va, vb, vc) is monochromatic under CH . Then v′a, v

′
b, v

′
c ∈ V3 all have the same color. Then,

there is a triangle (va,i, vb,i, vc,i) in T1 by definition, and all its vertices must have the same color
(the opposite of that used for v′a, v

′
b, v

′
c). This is a contradiction, thus all hyperedges of H are

bicolored, and CH is proper.

B Hardness of Approximation for General Tournaments

In this section, our goal is to prove Theorem 4.9. Our proof parallels the proof of hardness of
approximate coloring of digon-free digraphs of [FHS19]; we extend their approach to tournaments
and show that it can be used to obtain hardness of approximation.

Theorem 4.9. Given any arbitrarily small constant ǫ > 0, it is NP-hard to approximate the
chromatic number of tournaments within a factor of n1/2−ǫ.

Lemma B.1. Let ǫ be a constant such that 0 < ǫ < 1. There exists a tournament T = (V,A)
where V = X + Y with |X| = |Y | = n such that with probability going to 1 as n goes to infinity,
for every two subsets SX ⊆ X, SY ⊆ Y having |SX | ≥ nǫ, |SY | ≥ nǫ, the tournament induced by
SX ∪ SY contains a triangle.

Proof. Define T = (V,A) with V = X ∪ Y such that X and Y each form transitive tournaments
on n vertices. Then orient all the remaining arcs randomly; so for u ∈ X, v ∈ Y , the arc goes
from u to v with probability 1/2.

Given 0 < ǫ < 1, take any SX ⊆ X, SY ⊆ Y with |SX | ≥ nǫ and |SY | ≥ nǫ. Take u, v ∈ SX , and
w ∈ SY . Then the probability of (u,v,w) forming a directed triangle in T is 1/4, thus the probability
of u and v forming no triangle with any vertex in SY is at most (3/4)n

ǫ

since the arcs between u
and w and between v and w are oriented independently for every w ∈ SY . This probability tends
to zero as n goes to infinity.

The previous lemma can be derandomized using an explicit construction for bipartite Ramsey
graphs [BRSW12].
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Lemma B.2. Let ǫ be a constant such that 0 < ǫ < 1. There exists a tournament T = (V,E) where
V = X + Y with |X| = |Y | = n such that for sufficiently large n, for every two subsets SX ⊆ X,
SY ⊆ Y having |SX | ≥ nǫ, |SY | ≥ nǫ, the tournament induced by SX ∪ SY contains a triangle.

Proof. Take a sufficiently large n. Then, from Theorem 1.3 in [BRSW12] there exists an explicit
construction of a bipartite o(n)-Ramsey graph over n vertices. Let B1 = (X1, Y1, E1) be such a
graph. Then, define the tournament T = (V,E) with V = X + Y in the following way:

• X = X1 and Y = Y1

• Orient the arcs inside X and Y such that they both induce transitive tournaments.

• For every u ∈ X, v ∈ Y , orient the arc from u to v if (u, v) ∈ E1 and from v to u otherwise.

Given 0 < ǫ < 1, take any SX ⊆ X, SY ⊆ Y with |SX | ≥ nǫ and |SY | ≥ nǫ. Let x ∈ SX

and y ∈ SY be the middle vertices of SX and SY (ie. x has roughly equal in and out-degree in
SX , and y in SY ). Without loss of generality, suppose that the arc between u and v is oriented
from u to v. Then, the graph induced on B1 by SX [n−(u)] and SY [n

+(v)] is of size at least nǫ − 2,
thus it is neither complete nor empty for sufficiently large n (since B1 is a o(n)-Ramsey graph).
This implies that there is an arc from a vertex y ∈ SY [n

+(v)] to a vertex x ∈ SX [n−(u)]. Thus,
there is a directed cycle (u, v, y, x) in SX ∪SY , and since it is a tournament, there is some directed
triangle.

Theorem B.3. It is NP-hard to find an acyclic induced subgraph of size greater than n1/2+ǫ in an
nǫ-colorable tournament, for every 0 < ǫ < 1

4 .

Proof. For any ǫ > 0, let G = (V,E) be a graph on nG vertices, colorable with nǫ
G colors. Feige and

Kilian proved that it is NP-hard to find an independent set of size greater than nǫ
G in such graphs.

For each vertex vi ∈ V , define a new transitive tournament Ti on nG vertices. For each edge
(vi, vj) ∈ E, join Ti and Tj such that they form the tournament of Lemma B.2, with Ti being X
and Tj being Y . For all remaining vi, vj ∈ V with i < j (such that (vi, vj) /∈ E), orient all arcs from
each vertex of Ti to each vertex of Tj . This defines a new tournament T on n = n2

G vertices. T has
an acyclic k-coloring with k ≤ nǫ/2 by coloring each Ti with the color of vi in a nǫ

G = nǫ/2-coloring
of G. Indeed, the only arcs that are not bicolored are inside a Ti for some i, or from a vertex of
Ti to a vertex of Tj for i < j, and can thus never form a triangle. Let S be an acyclic induced
subtournament of T . Notice that from Lemma B.2, if S intersects every (Ti)i∈I on more than nǫ

vertices, then (vi)i∈I forms an independent set of G. Therefore, if |S| > 2n
1+ǫ

2 , there must be at
least nǫ tournaments that intersect S on at least nǫ vertices, which then leads to an independent
set of size at least nǫ in G.

The hardness of approximating a coloring in tournaments then comes as a corollary, as it
immediately follows that it is NP-hard to distinguish a nǫ-colorable tournament from a k-colorable
tournament with k ≥ n1/2−ǫ, for every 0 < ǫ < 1

4 .

Corollary B.4. Given any arbitrarily small constant ǫ > 0, it is NP-hard to approximate the
chromatic number of tournaments within a factor of n1/2−ǫ.

25



C Light Tournaments

For the sake of completeness, we show that two other approaches from the literature can be adapted
to obtain efficient algorithms for coloring light tournaments. We prove the following lemma, which
is weaker than what we proved in Section 5.

Lemma C.1. Let T be a light tournament. Then ~χC(T ) ≤ 35.

C.1 Algorithm I for Coloring Light Tournaments

Since a light tournament forbids a heavy edge, and a heavy edge is a hero (i.e., it is ∆(C3, 1, 1)),
we show that the decomposition approach of [BCC+13] for bounding the dichromatic number of
tournaments without a fixed hero can turned into an efficient algorithm to color a light tournament
with approximately 35 colors. Throughout this section T = (V,A) will denote a light tournament.

In Section 5, we already presented many of the necessary definitions. We consider a C3-chain
(Definition 5.3). Since there are no backwards arcs in a C3-chain, we have the following corollary.

Corollary C.2. A C3-chain can be efficiently 2-colored.

Let us fix X = (X1,X2, . . . ,Xℓ) to be a maximal C3-chain in T , and let W = V (T ) \ V (X).
Recall that W is further partitioned into clear and unclear vertex sets denoted by C and U ,
respectively. A vertex v belongs to C if for every Xi, we have either v ⇒ Xi or Xi ⇒ v. If C is
transitive, then X is defined to be maximal. Notice that such a maximal C3-chain can be found in
polynomial time, while in the proof of [BCC+13], they used a maximum length C3-chain (or more
generally jewel-chain); it is not clear that a C3-chain of maximum length can be found efficiently.

Now let us consider the unclear vertices U . Notice that if a vertex u ∈ U belongs to zone Zi for
i ∈ {1, . . . , ℓ− 1}, then there is at least one arc from u to a vertex in Xi+1.

Claim C.3. ~χC(Zi ∩ U) ≤ 3.

Proof. If z ∈ Zi ∩ U , then Xi ⇒ z. However, we have z ↔ Xi+1. This means that z belongs to
N(uv) for some arc uv ∈ Xi+1. In other words, we can partition the vertices in Zi ∩ U into three
sets according to the three arcs in Xi+1. Since there are no heavy arcs, each of these three sets is
transitive and we can color Zi ∩ U with three colors.

Claim C.4. ~χC(Xi ∪ (Zi ∩ U)) ≤ 5.

Proof. We use two colors for Xi (which is a triangle) and three colors for Zi ∩ U .

For simplicity, let us now assume that every vertex in V (T ) belongs to X or to U . Thus, we
assume that Zi = Zi ∩ U . (We only need one extra color for C since it is transitive.) Let Y0 = Z0

and for i ∈ {1, . . . , ℓ}, let Yi = Xi ∪ Zi. Define Y L
i =

⋃i−1
j=0 Yj and Y R

i =
⋃ℓ

i+1 Yj.

Claim C.5. Let v ∈ Yi. Then,

(i) ~χC(N
+(v) ∩ Y L

i ) ≤ 3, and
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(ii) ~χC(N
−(v) ∩ Y R

i ) ≤ 3.

Proof. We consider several cases. The first case is v ∈ Xi. Notice that N+(v) ∩Xj = ∅ for j < i,
and N−(v) ∩ Xj = ∅ for j > i. We also note that N−(v) ∩ (Zi+1 ∪ . . . ∪ Zℓ) = ∅. Now observe
~χC(N

+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)) ≤ 3. This is because each u ∈ N+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)
belongs to N(xy) for some arc xy ∈ Xi.

Now consider the case where v ∈ Zi. There are four subcases to consider.

1. N+(v) ∩ (X1 ∪ . . . ∪Xi−1) = ∅.

2. N+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)

Consider u ∈ N+(v) ∩ (Z0 ∪ Z1 . . . ∪ Zi−1). If u ⇒ Xi, then vu is a heavy arc (since
Xi ⊆ N(vu)). If Xi ⇒ u, then u would be in Zi (at least). Thus, u belongs to N(xy) for
some arc xy ∈ Xi. Hence, ~χC(N

+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)) ≤ 3.

3. N−(v) ∩ (Xi+1 ∪ . . . ∪Xℓ).

Since ~χC(X) ≤ 2, we have ~χC(N
−(v) ∩ (Xi+1 ∪ . . . ∪Xℓ)) ≤ 2.

4. N−(v) ∩ (Zi+1 ∪ . . . ∪ Zℓ).

Consider x ∈ Xi+1 such that arc vx is an arc. (Such an x exists, because it is not the case
that Xi+1 ⇒ v.) Now consider u ∈ N−(v) ∩ (Zi+1 ∪ . . . ∪Zℓ). We claim that u ∈ N(vx). We
conclude that ~χC(N

−(v) ∩ (Zi+1 ∪ . . . ∪ Zℓ)) ≤ 1.

1. and 2. together imply (i) in the statement of the claim, and 3. and 4. imply (ii).

Lemma C.6. Let (Y0, Y1, . . . , Yℓ) be a partition of V (T ) such that ~χC(Yi) ≤ c1 and for each v ∈ Yi:

• ~χC(N
+(v) ∩ (Y0 ∪ Y1 ∪ . . . ∪ Yi−1)) ≤ c2, and

• ~χC(N
−(v) ∩ (Yi+1 ∪ . . . ∪ Yℓ)) ≤ c2.

Then ~χC(T ) ≤ 2(2c1 + 2c2 + 1).

Proof. Let B ⊂ A(T ) be the set of backwards arcs (uv ∈ B if u ∈ Yi and v ∈ Yj for j < i). If
there are no backwards arcs, then ~χC(T ) ≤ maxi∈{0,1,...,ℓ}{~χC(Yi)} ≤ c1. Now we consider only a
subset of backwards arcs chosen as follows: Choose the longest backwards arc u1v1 where u1 ∈ Yℓ.
Suppose v1 ∈ Yj for j < ℓ. Let T1 =

⋃ℓ
i=j Yi. Then choose the next backwards arc u2v2 with

u2 ∈ V (T1) and v2 in Yk for the smallest value of k possible, etc. Let T2 =
⋃j−1

i=k Yi, etc. Notice
that if we consider the union of all Ti with odd i, there are no backwards arcs between them, and
the same for Ti with even i. Suppose there are h such Ti’s.

Then, ~χC(T ) ≤ 2 · maxi∈{1,...,h} ~χC(Ti). Now we claim that ~χC(Ti) ≤ 2c1 + 2c2 + 1. Consider
the backwards arc uv, where u ∈ Yk and v ∈ Yj for j < k. We can color N−(v) ∩ (Ti \ Yj) and
N+(u) ∩ (Ti \ Yk) each with c2 colors. We can color Yj and Yk each with c1 colors. Finally, we
consider all vertices in P = Ti \{Yj ∪ Yk ∪N+(u) ∪N−(v)}. All vertices in P belong to N(uv) and
thus form a transitive tournament requiring one more color.
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So the algorithm to color a light tournament T is to find a maximal C3-chain X. Next, color
the clear vertices C with one color and remove C from T . Now consider the induced tournament
on the remaining vertices and construct the partition (Y0, Y1, . . . , Yℓ) based on X. Now follow the
procedure in Lemma C.6.

Notice that c1 = 5 and c2 = 3. So Lemma C.6 uses 34 colors, and we add one more color to
color C.

C.2 Algorithm II for Coloring Light Tournaments

[HLNT19] gave an algorithm to color a triangle-free dense digraph (with bounded independence
number). We show how this approach can be adapted to give another algorithm to color a light
tournament with a constant number of colors.

In this section, T is always a light tournament unless otherwise noted.

Definition C.7. A set of vertices B ⊆ V is a bag of T if for every triangle xyz in V \B, there is
some vertex b ∈ B such that {x, y, z} ⇒ b or b ⇒ {x, y, z}. Moreover, a bag must contain a directed
triangle (i.e., it cannot be transitive).

Observe that if B is not a bag of T , then we can color B with three colors. If B is a bag of T ,
then any S such that B ⊂ S ⊂ V is also a bag of T . Also, note that V itself is a bag of T .

Claim C.8. If B ⊂ V is not a bag of T , then ~χC(T [B]) ≤ 3.

Proof. If B is not a bag of T because it does not contain a triangle, then it is transitive. If it
contains a triangle and is not a bag of T , then there is some triangle xyz such that {x, y, z} ⊂ V \B
and for every b ∈ B, b ∈ N±({x, y, z}). Thus, we can apply Claim 5.9.

We say a bag B is poor if for every triangle xyz ∈ B either N+({x, y, z}) or N−({x, y, z}) is
not a bag. We want to show that poor bags can also be colored with a constant number of colors.

Claim C.9. If B ⊆ V is a poor bag, then ~χC(T [B]) ≤ 18.

Proof. Consider a poor bag B. Consider all triangles in B. For each triangle, either its in-
neighborhood or its out-neighborhood is not a bag of T . If there is a triangle xyz in B such
that both its in-neighborhood and its out-neighborhood are not bags of T , then we can color B
with at most 11 colors: three for in-neighborhood, three for the out-neighborhood, two for the
triangle and three for N±({x, y, z}).

So suppose for each triangle in B, its in-neighborhood is not a bag and its out-neighborhood
is a bag, or vice-versa. According to these two possibilities, partition these triangles into L and R
and consider the respective vertex sets (which can overlap). Consider R. These are triangles whose
out-neighborhood is not a bag. Since there are no backwards arcs in a chain of C3’s, there must be
some triangle xyz in R such that N−({x, y, z})∩R does not contain a triangle. Thus, we can color
its in-neighborhood with one color, its out-neighborhood with three colors, it’s non-neighborhood
with three colors, and the triangle itself with two colors, for a total of nine colors. We repeat the
argument for L, so the maximum number of colors required is 18.
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Following [HLNT19], our plan is to find a chain of poor bags, put the remaining vertices into
zones and show that there are no long backwards arcs between the zones.

We define B = (B1, B2, . . . , Bℓ) to be a bag chain of length ℓ if each Bi is a bag of T and
Bi ⇒ Bi+1 for all i ∈ {1, 2, . . . , ℓ− 1}. Let W = V (T ) \ V (B). Assign w ∈ W to zone Zi if i is the
highest index such that Bi ⇒ w.

Claim C.10. Let B = (B1, B2, . . . , Bℓ) be a bag chain for a light tournament T . Let (Z0, Z1, . . . , Zℓ)
be a partition of V (T ) \ V (B) zones. The following properties hold:

(a) Bi ⇒ Bi+r for every r ≥ 1,

(b) Bi ⇒ Zi+r for every r ≥ 0,

(c) Zi ⇒ Bi+r for every r ≥ 3,

(d) Zi ⇒ Zi+r for every r ≥ 2.

Proof. Property (a) holds for r = 1 by definition of a chain of bags. Now let r ≥ 2. Suppose there
is a backwards arc uv with u ∈ Bi+r and v ∈ Bi. Since Bi+1 contains a triangle, the arc uv is
heavy, which is a contradiction.

By the partitioning criteria of vertices in V (T ) \ V (B) into zones, we have Bi ⇒ Zi. If there is
some arc uv with u ∈ Zi and v ∈ Bj for j < i, then arc uv is heavy. Thus, Bj ⇒ Zi for all j < i.

To prove property (c), suppose there is an arc uv with u ∈ Bi+3 and v ∈ Zi. Then there is some
arc vx for x ∈ Bi+1 (otherwise, v would be in Zi+1). Then uvx is a triangle. Since Bi+2 is a bag of
T , there is some vertex y ∈ Bi+2 such that y ⇒ {u, v, x} or {u, v, x} ⇒ y. But this is not possible
since x ⇒ Bi+2 and Bi+2 ⇒ u. Thus, there is no such arc uv and we have Zi ⇒ Bi+3. Now replace
3 with r.

To prove property (d), suppose that there is an arc uv with u ∈ Zi+2 and v ∈ Zi. Consider some
x ∈ Bi+1 such that uxv is a triangle. Now since Bi+2 is a bag of T , there is some y ∈ Bi+2 such
that y ⇒ {u, x, v} or {u, x, v} ⇒ y, which is a contradiction since Bi+1 ⇒ Bi+2 and Bi+2 ⇒ Zi+2.
Now replace 2 with r ≥ 2.

Now we need to show that we can color Bi ∪ Zi efficiently with a constant number of colors.
For this, we need the following observations.

Claim C.11. A zone Zi does not contain a bag chain of length at least five.

Proof. If so, we can extend the principal bag chain B.

Claim C.12. A tournament without a bag chain of length five can be colored with c colors.

Proof. Let S ⊂ V be a set of vertices such that S does not contain a bag chain of length five for T .
Either S itself is not a bag of T or S is a poor bag of T , in which case, we are done. Otherwise, we
find a triangle in S and partition the remaining vertices according to the in- and out-neighborhoods
of this triangle, and perhaps repeat this procedure to produce a bag chain of length at most four.
Each vertex that is not in this bag chain is in the non-neighborhood of some triangle. There are
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at most three “pivot” triangles used. So in the end, the vertices of S are decomposed into a bag
chain of at most four poor bags, a chain of C3’s, and five zones, each of which can be colored with
three colors. So the number of colors required is at most 18 + 2 + 3 · 3 = 29.

D Hk-free tournaments

Definition D.1. Let {Hk}0≤k be the family of tournaments defined recursively with H0 being a
single vertex and Hk+1 = ∆(Hk, 1, 1) ∀k ≥ 0.

Notice that H1 = C3. The set {Hk} is a special class of heroes. Define f to be the function
such that for any k ≥ 1, f(k) = ~χC(T ) where T is an Hk-free tournament. (In particular, f(1) = 1
and f(2) ≤ 9, as shown in Section 5.)

Lemma D.2. For an integer k ≥ 0, the number of colors needed to color an Hk-free tournament
is f(k) ≤ ∏k−1

i=1 4i+ 5.

The proof of this Lemma will follow the proof of Theorem 5.1: We will build a jewel-chain of
Hk’s in order to bound the chromatic number of the in-neighborhood of some vertex v and the
out-neighborhood of another vertex u, which we will then use as the endpoints of a vertex chain.
We start by extending the notion of heavy arcs to this setting.

Definition D.3. We say an arc e is k-heavy if its neighborhood N(e) contains an Hk.

Notice that T is Hk+1-free iff it does not contain a k-heavy arc. For the rest of the section, let
T be an Hk+1-free tournamant. Our goal will be to partition T into Hk-free sets, which will then
allow us to color T by induction.

Definition D.4. Define an Hk-chain of length ℓ in T to be a set of ℓ vertex disjoint Hk’s, X =
(X1,X2,X3, . . . ,Xℓ), such that for each i ∈ {1, . . . , ℓ− 1}, Xi ⇒ Xi+1.

A backwards arc in a Hk-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

Lemma D.5. An Hk-chain has no backwards arcs.

This follows from the next claim.

Claim D.6. Let T be an Hk+1-free tournament. If X = (X1,X2, . . . ,Xℓ) is an Hk-chain of length
ℓ, then Xi ⇒ Xj for i < j, where 1 ≤ i < j ≤ ℓ.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a Hk-chain, we have
all arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2 to Xi since otherwise Xi+1

would appear in the neighborhood N(uv), meaning that {u} ∪ {v} ∪Xi+1 forms an Hk+1, which
is a contradiction. This implies that all arcs go from Xi to Xi+2 (since T is a tournament). Now
suppose j > i + 2. If there is a back arc uv from u ∈ Xj to v ∈ Xi, then uv is a k-heavy arc,
because Xj−1 would be in N(uv) since by induction we have all arcs from Xi to Xj−1 and from
Xj−1 to Xj .

30



Let us fix X = (X1,X2, . . . ,Xℓ) to be an Hk-chain in T , and let W = V (T ) \ V (X). Initially,
X can be of any length ℓ ≥ 1.

Claim D.7. For w ∈ W :

1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.

2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.

Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is a k-heavy arc.
Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for j < i, then wu is a k-heavy
arc.

We partition the vertices in W into zones (Z0, Z1, . . . , Zℓ) using the following criteria. For
w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned to zone Zi. If there is no
such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in H. Let C ⊆ W be the set of
clear vertices.

Claim D.8. If C is not Hk-free, we can extend X.

Proof. If the set Zi ∩ C contains an Hk, then we can extend X by adding a new Hk to the chain
between Xi and Xi+1.

If there is no i such that Zi ∩ C contains an Hk, then we claim that C is Hk-free. This follows
from the observation that there are no backwards arcs from Zj ∩ C to Zi ∩ C for i < j. Indeed,
should such an arc uv from Zj ∩ C to Zi ∩ C exist, then Xi+1 ⊂ N(uv), so uv would be k-heavy.
Notice that since Hk is strongly connected, if an Hk were to belong to two different zones, it would
create a backwards arc. Thus, we can conclude that if we cannot extend X, then C is Hk-free.

We say that X is a maximal Hk-chain if C is Hk-free. Let us also now define the unclear vertices
U , where U = W \ C. In a maximal Hk-chain X = (X1, . . . ,Xℓ), notice that for a vertex a ∈ X1,
we have N−(a) ∩ U ⊆ No(X1).

Claim D.9. We can efficiently find two Hk’s X1 and Xℓ such that the set S = {v | v ⇒ X1 or Xℓ ⇒
v} is Hk-free.

Proof. Find a maximal Hk-chain X and let ℓ be the length of this chain. The set of vertices
{v | v ⇒ X1 or Xℓ ⇒ v} is a subset of C and is therefore Hk-free.

Claim D.10. Let Y be an Hk. Then ~χC(N
o(Y )) ≤ (2k + 1) · f(k).

Proof. Take a Hamilton cycle (ei)1 ≤i≤2k+1 of Y . Each vertex v ∈ No(Y ) belongs to N(ei), for some
i. Since each of these sets is Hk-free, we conclude that No(Y ) can be colored with (2k + 1) · f(k)
colors.

We can now prove that Hk+1-free tournaments have bounded chromatic number by finding a
(4k + 1) · f(k)-vertex chain.
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Theorem D.11. Let T be an Hk+1-free tournament. Then ~χC(T ) ≤ (4k + 5) · f(k).

Proof. We just need to show that we can find a (4k + 1) · f(k)-vertex chain. Recall that for a
vertex a ∈ X1, we have N−(a) ∩ U ⊆ No(X1). If a ∈ X1, and (ei)1 ≤i≤2k+1 is a Hamilton cycle
of X1 with e1 = ua and e2 = av for some vertices u and v, then notice that for w ∈ N−(a) ∩ U ,
w /∈ N(e1). Thus, N

−(a)∩U ⊆ ∪2≤i≤2k+1N
o(ei), which is efficiently colorable with 2k ·f(k) colors,

since it can be decomposed into 2k sets which are Hk-free and thus efficiently colorable with f(k)
colors. Making an analogous argument for N+(z) ∩ U , we conclude that (N+(z) ∪N−(a)) ∩ U is
efficiently 4k ·f(k)-colorable. The rest of the vertices in N+(z)∪N−(a) belong to the set S defined
in Claim D.9 and can be colored with f(k) colors. Therefore ~χC(N

+(z)∪N−(a)) ≤ (4k+1) · f(k),
so we can use z and a as the endpoints of a 4k + 1) · f(k)-vertex chain. Finally, it is clear that the
neighborhood of an edge in an Hk+1-free tournament is Hk-free, and can thus be colored efficiently
with f(k) colors. Then we can apply Lemma 2.5 to prove that ~χC(T ) ≤ (4k + 5) · f(k).

As an immediate corollary, we can bound the function f .

Corollary D.12. For all integers k, the number of colors needed to color an Hk-free tournament
f(k) ≤ ∏k−1

i=1 4i+ 5.
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