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Abstract

Over the past years, the number of cores and threads has been rapidly
increasing, in both personnal and industrial machines. This makes scala-
bility paramount to achieving the best performance, which requires partic-
ular attention to the interactions between threads, especially for memory
access. In this work we look at efficient solutions for the famous reader-
writer lock, in the case of massively parrallel access. We present novel scal-
able reader-writer locks, and explore the tradeoff between phase-fairness
and scalabilty. These algorithms are formally verified in tla+. The per-
formance of these solutions is compared to other reader-writer locks that
were not designed for scalability using different benchmarks on a Xeon
Phi server.

1 Introduction

One of the main issues of parallel programming is managing concurrent threads
trying to access the same shared resource. Letting all the threads work on
the common resource simultaneously can lead to very unexpected results, so a
portion of code, in the form of a lock, is added to control its access. Mutual
exclusion locks are synchronization primitives that are designed to avoid con-
current access to this resource for all threads. A mutex lock can be owned by
at most one thread at a time. When a thread gains ownership of the mutex,
it is granted access to the shared resource, and can execute its critical section,
which is the portion of code it wants to execute on the resource (eg. a store).
In their review paper [1], the authors identify several critical properties for a
mutual exclusion lock to be considered correct. Given a number of threads that
may run at arbitrary speed and in arbitrary order:
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1. Only one thread may be in a critical section at a time; this is called
mutual exclusion.

2. If a thread is not in the entry or exit code of a lock, it may not prevent
other threads from accessing the critical section, which would be a deadlock.

3. In selecting a thread for entry to the critical section, the choice may not
be postponed indefinitely. Otherwise, there is a livelock.

4. Any thread that arrives in the entry section must eventually get through
its critical section. If it is not the case, the thread is subject to starvation.

There is a weak fairness assumption on the actions of threads: all threads
will eventually execute their next step. This is different from strong fairness,
which guarantees that a thread that is infinitely often in a given state will take
a step from that state. To exemplify the difference, imagine a binary clock
(switches from 0 to 1 and vice versa infinitely). If a thread can only access its
critical section if the clock has value 1, under weak fairness assumptions it is
never guaranteed to get through: it may test the value of the clock only when it
has value 0. This leads to starvation, which would not be the case under strong
fairness assumptions.

There is a different fairness notion for the lock, which is a measure of how
many other threads may overtake a given waiting thread. If all are serviced
on a First In First Out (FIFO) basis, the lock is said to be task-fair. While
this gives the best theoretical complexity guarantees, it can be a hindrance to
performance, and is not a necessary property of mutual exclusion locks.

Reader Writer (RW) locks were developed on the observation that some tasks
(reads) can be executed simultaneously without a problem, as long the data is
not modified at the same time (writes). Mutual exclusion locks will unnecessar-
ily serialize all these tasks. Mutual exclusion is therefore relaxed for RW locks:
exclusion among writers and between readers and writers is maintained, but
needless exlusion between readers is dropped.

When the thread count increases, especially for short critical sections, having
an entry and exit code that scale efficiently to large numbers of actors becomes
paramount. This is the notion of scalability. In this work, we propose a highly
scalable RW lock, and explore the tradeoff between fairness and scalabilty. In
order to scale well to a large number of threads, particular attention must be
given to the use of shared resources, as well as blocking and non blocking memory
accesses.

2 Algorithms

2.1 Cohort based Reader Writer lock (C-RW)

This algorithm is adapted from an algorithm in [2]. It is based on the technique
of lock cohorting, which allows the lock to take advantage of non uniform mem-
ory access. To do so, it uses a cohort lock [3], that makes threads which are on
the same NUMA node compete for a local ticket lock. The owners of the local
lock then compete for a top-level partitioned ticket lock. While writers compete
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for this mutual exlusion lock, readers wait for the lock to be unlocked to get
through, which can lead to reader starvation, since the mutex may always be
locked when a reader attempts to enter. This would be the case if other writers
barge ahead every time the cohort lock is opened. In the original paper, the
authors solve this problem by introducing a patience limit for the readers, after
which they block writers from reacquiring the lock. However, this is done in a
way that introduces writer starvation: a given writer thread may repeatedly try
to enter when the patience-based barrier is up, and never get in.

In the original work, the authors use a simple counter for the read indica-
tor. It is incremented by the arrive() method, and decremented by depart().
WaitUntilIsEmpty() then simply busy waits for the indicator’s value to be 0. In
order to achieve better scalabilty, we replaced it with a distributed indicator, in
which each thread had its own binary indicator, which is set to 1 by arrive() and
0 by depart(). WaitUntilIsEmpty() then busy waits iteratively for each thread’s
indicator to be 0.

Algorithm 1 C-RW

reader:
while True do

while CohortLock.isLocked() do
Pause

end while
ReadIndicator.arrive()
if not CohortLock.isLocked() then

break
end if
ReadIndicator.depart()

end while
Critical Section
ReadIndicator.depart()

writer:
CohortLock.Lock()
ReadIndicator.WaitUntilIsEmpty()
Critical Section
CohortLock.Unlock()

2.2 Handover based Reader Writer Lock (H-RW)

Many writer threads trying to acquire the mutex lock simultaneously can hurt
performance a lot. One way of reducing the impact, in situations with high
contention, is to handover the lock between writers a number of times before
releasing it. We developed the Handover Reader Writer lock based on this idea.
In essence, the writer threads look for other writers to hand over the mutex
to when they are releasing the lock. They then tell the given thread, thanks
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to a distributed indicator, that they now own the lock and can go through the
critical section. In order to avoid starvation, this handover is offered once to
every other thread, one ater the other. Then the writers back off for a reader
phase, and open the lock.

One main property of this lock is that it spaces out read phases, by up
to nThreads write phases. It has the advantage of letting read requests ”pile
up” before being all executed at once, but the drawback of offering less good
complexity guarantees on read requests, compared to other RW locks. In section
3 we will present derivations of this algorithm which alternate between read and
write phases.

2.2.1 Reader phase

Reader threads communicate their intentions to the writers on a distributed
indicator (ReadIndicator), by setting their state to away (default), reading,
attempting barrier, or barrier.

A reader phase is initiated either when the writer mutex lock is unlocked, or
a writer sets the backoff variable to True. In the first case, readers can simply
access the critical section until a writer arrives, and signal their presence by
setting their state to anything other than away. When a writer thread takes the
mutex, it will first wait for all reading threads to depart.

A writer initiates a reader phase by baking off when it sees any reader thread
that put up a barrier (either barrier or attempting barrier state). There are then
two parts to the phase. While backoff is set to true, all readers in the barrier or
attempting barrier state will go through the critical section. The writer thread
waits for this to happen by itiratively busy waiting for each individual thread
to have a state different than barrier or attempting barrier ((waitUntilBarrier-
Down()). Any new readers that arrive during this time will access the lock, but
in the read state. The writer threads then retracts backoff (by setting its value
to False), and no new readers will be able to access the critical section. It then
iteratively waits for all the remaining readers to leave (no longer be in the read
or attempting barrier state) with the waitUntilReadEmpty() method.

When a reader attempts to enter the lock, it will first try to go through in
the reading state. If it cannot (mutex locked or backoff set to false), it will
attempt to go through in the attempting barrier state. If still not possible it
will set the barrier state, and wait to finally be able to get in. The intermediate
attempting barrier state is a hybrid of both reading and barrier. It is needed
to avoid mutual exclusion violation because even when the writer waited for all
threads in the attempting barrier or barrier state to no longer be in them, a
thread that avaluated the if condition prior to backoff being set could pass from
the reading state to the attempting barrier state.

2.2.2 Writer phase

Similarly to readers, writers communicate their presence to other writers through
a distributed indicator (WriteIndicator), but it only has two states: away (de-
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Algorithm 2 H-RW - Readers

reader:
ReadIndicator.read(self)
if Lock.isLocked() and not Backoff.load() then

ReadIndicator.attemptBarrier(self)
if Lock.isLocked() and not Backoff.load() then

ReadIndicator.barrier(self)
while Lock.isLocked and not Backoff.load() do

Pause()
end while

end if
end if
Critical Section
ReadIndicator.depart()

Algorithm 3 H-RW - Writer backoff

SetBackoff():
if ReadIndicator.isBarrier() then

Backoff.store(True)
ReadIndicator.waitUntilBarrierDown

end if
RetractBackoff():

if Backoff.load() then
Backoff.store(False)
ReadIndicator.waitUntilReadEmpty()

end if

5



fault) and waiting. Their access to the lock is controlled by a mutex, Lock.
Its method takeLock atomically (through a compare-and-swap instruction), sets
the lock to locked and returns true if it was unlocked, or returns false if it was
already locked.

A writer can take ownership of the mutex lock, and therefore the reader-
writer lock in two ways. The first is the takeLock method, which atomically
(through a compare-and-swap instruction), sets the lock to locked and returns
true if it was unlocked, or returns false if it was already locked. The second is
by implicitely being granted ownership through handover. This is done when a
writer set its state to waiting, and then the owner of the lock sets the state of
the first to away. Therefore, to see if the lock was handed over to it, a writer
tests wether its state in the indicator is still waiting. When a writer arrives, it
will therefore start by setting its state to waiting, then try to take the lock. If
unsucessfull, it busy waits for the lock to be opened or to be handed over to
it. After it stops waiting, if it was not handed over the mutex it will attempt
to take the lock again. If this also fails, it now knows that another thread took
the lock after it started waiting, so it is guaranteed to be handed over the lock
at some point, and busy waits untill that time.

Now that the writer got ownership of the lock, the two cases must be distin-
guished. If it took it directly, it will start by doing a full reader phase, because
while the lock was open readers may have accessed the lock in any state, and
it will initialise the parameters of the handover cycle (Start and End). In case
of a handover, the previous owner set the backoff, and the writer only needs to
retract it and wait for the readers to leave the lock.

After going through the critical secction, writers will try to hand over the
lock to the next thread numerically, in the cycle of length the number of threads.
It will do so only if the other thread is in the waiting state. Once a handover
cycle is complete, the writer will set backoff to initiate a reader phase, and then
start a new backoff cycle or free the lock if there is no writer waiting. This
guarantees a linear wait for readers, who once they executed their entry section
can be delayed by at most the number of threads writers.
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Algorithm 4 H-RW - Writer lock

ExclusiveLock():
WriteIndicator.wait(self)
if not Lock.takeLock() then

while WriteIndicator.isWaiting(self) and Lock.load() do
Pause

end while
if not WriteIndicator.isWaiting(self) then

RetractBackoff()
Start = self
return

end if
if not Lock.takeLock() then

while WriteIndicator.isWaiting(self) do
Pause

end while
RetractBackoff()
Start = self
return

end if
end if
SetBackoff()
Backoff.store(False)
ReadIndicator.waitUntilReadEmpty()
WriteIndicator.depart(self)
Start = self
End = self

Algorithm 5 H-RW - Writer unlock

writer:
if HandoverWriter() then

return
end if
if ReadIndicator.isBarrier() then

Backoff.store(True)
ReadIndicator.waitUntilBarrierDown
End = Start
if HandoverWriter() then

return
end if
Backoff.store(False)
Lock.unlock()

end if
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Algorithm 6 H-RW - HandoverWriter()

HandoverWriter()
for i = (start + 1) mod nThreads, with i 6= end, step i = (i+1) mod
nThreads do

if WriteIndicator.isWaiting(i) then
WriteIndicator.depart(i)
return True

end if
end for
return False

3 Phase-Fairness

Phase fairness is a concept exposed in [4] to extend the notion of fairness to
reader-writer locks. Indeed, task fairness is an ill-suited notion for RW locks,
since it would require all readers to be executed sequentially. This would com-
pletely remove the advantages of the relaxed mutual exclusion over mutex locks.
We take their definition of phase-fairness.

A RW lock is said to be phase fair, if and only if it satisfies the following
properties:

PF1: reader phases and writer phases alternate
PF2: writers are subject to first-in-first-out (FIFO) ordering with regard to

other writers
PF3: during each reader phase, all read requests that were unsatisfied at

its start will be executed
PF4: during a reader phase, newly-issued read requests are satisfied only if

there are no unsatisfied write requests pending.
These properties give bounds on the complexity of read and write requests:

a reader can be blocked by at most one read and one write phase, whereas a
writer can be blocked by at most (nThreads - 1) writer and reader phases.

Phase fairness can be seen as the middle ground between writer preference
locks, where arriving barge ahead of readers and can lead to reader starvation,
but guarantee liner wait for writers, and reader preference locks, which ensure
constant wait for readers but can starve writers. In this type of lock, both
readers and writers cede to each other after every phase.

3.1 Phase Fair Cohort Reader Writer lock (PF-C-RW)

This algorithm was initially created as a phase-fair version of the cohort reader-
writer, but modified so much it no longer has much resemblance. First of all, in
order to ensure strict FIFO ordering for writers, the mutex used by the writers
was changed to a ticket lock. Indeed, the cohort lock only guarantess linear
wait, and not FIFO ordering, except in degenerate cases (where one node is
either a single thread or all the threads) where it becomes an overcomplicated
ticket lock.
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The writer part of this lock is fairly simple: a thread arrives, competes for
the ticket lock, does one backoff phase, goes through its critical section and
relinquishes control of the lock. Meanwhile, the reader either goes through
its critical section directly if the lock is unlocked, or gets to the barrier state
otherwise. In order to avoid mutual exclusion violation, an attempting barrier
state is used again, in which the reader will retract the barrier if it sees the
writer set backoff before it could confirm its barrier. Thanks to this, the reader
is guaranteed, once in the barrier state, that the writer will wait for it during
its next backoff phase, so it can go through the critical section when backoff is
set.

Let us show that this algorithm verifies all the properties required for phase-
fairness. First of all, the FIFO ordering of writers (PF2) is guaranteed by
the ticket lock. It is also simple to see that phases alternate (PF1): before
each writer phase there must be a reader phase during the time it sets backoff.
A reader phase starts either when the lock is unlocked, or backoff is set. Any
reader that executed all its entry section must be in the while loop that becomes
untrue in both these cases, and also in the barrier state. Since the writer waits
for all readers to exit this state, all these threads must go through their critical
section before the end of the reader phase (PF4). Finally, when a writer arrives,
he immediately sets backoff after taking the lock. After that point, no newly
arriving reader can get through its critical section (PF3), since it will be blocked
in the first while loop.

3.2 Phase Alternating Handover Reader Writer lock (PA-
H-RW)

We made two modifications of H-RW, that are both not phase-fair, but satisfy
more of the required properties. This first algorithm is made to have alternating
read and write phases (PF1). It also guarantees any reader that is waiting at
the beginning of a reader phase to get through (PF3). It does not however
respect the FIFO ordering requirement (PF2), nor does it guarantee that newly
arriving readers do not get through in a given reader phase if there is a writer
waiting (PF4).

Compared to H-RW, the only modification is in the writer unlock. The fact
that a backoff phase is initiated at every handover makes it simpler: there is no
more need to track how many successive handovers were made, and whether a
backoff phase is necessary.
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Algorithm 7 PF-T-RW

reader:
ReadIndicator.read(self)
if Lock.isLocked() then

ReadIndicator.attemptBarrier(self)
if Backoff.load() then

ReadIndicator.read(self)
while Backoff.load() do

Pause
end while

end if
ReadIndicator.barrier(self)
while Lock.isLocked and not Backoff.load() do

Pause()
end while

end if
Critical Section
ReadIndicator.depart()

writer:
TicketLock.Lock()
Backoff.store(True)
ReadIndicator.waitUntilBarrierDown()
Backoff.store(False)
ReadIndicator.WaitUntilReadEmpty()
Critical Section
TicketLock.Unlock()

Algorithm 8 PA-H-RW - Writer unlock

writer:
SetBackoff()
for i = (start + 1) mod nThreads, with i 6= start, step i = (i+1) mod
nThreads do

if WriteIndicator.isWaiting(i) then
WriteIndicator.depart(i)
return

end if
end for
RetractBackoff()
Lock.unlock()
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algorithm PF1 PF2 PF3 PF4 writer complexity reader complexity
CRW no no no yes O(n) reader starvation
HRW no no yes no O(n) O(n)

PAHRW yes no yes no O(n) O(1)
SPAHRW yes no yes yes O(n) O(1)
PFCRW yes yes yes yes O(n) O(1)

Table 1: Summary of the properties of the different algorithms

3.3 Short Phase Alternating Handover Reader Writer (SPA-
H-RW)

This second algorithm derived from H-RW verifies the same properties as the
first, but also that any reader that arrives during a reader phase will not go
through if a writer is waiting. In order for this to be true, the reader unlock
is modified to be that of PF-T-RW, which was designed with that objective
in mind. The writer unlock is the same as that of PA-H-RW, which gives
alternating phases.

The only remaining property of phase-fairness that is not verified is the
FIFO ordering amongst writers. The most efficient way of adding this property
is using a ticket system, which would make it into PF-T-RW.

We summarized the properties of all our algorithms in Table 1.

Algorithm 9 SPA-H-RW - reader

reader:
ReadIndicator.read(self)
if Lock.isLocked() then

ReadIndicator.attemptBarrier(self)
if Backoff.load() then

ReadIndicator.read(self)
while Backoff.load() do

Pause
end while

end if
ReadIndicator.barrier(self)
while Lock.isLocked and not Backoff.load() do

Pause()
end while

end if
Critical Section
ReadIndicator.depart()
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4 Formal verification

All the algorithms we presented were verified in the tla+ formal verification
language. They were translated from PlusCal specifications. PlusCal is an
imperative language that enables algorithms to be defined similarly to other
programming languages. They are then automatically transpiled into tla+. In
order to verify the corectness of the algorithms, properties and invariants can be
written, which are then checked in all reachable states when the model is run.
Since the number of reachable states evolves exponentially with the number of
threads, we only verified the algorithms for up to 4 threads.

The default model in tla+ already checks the translated algorithm for live-
ness (no livelocks), so we only wrote properties to verify mutual exclusion and
starvation. Each line of code in pluscal is defined by a label, and we named
the entry of the read section r1, and that of the write w1. The read and write
critical sections were labelled respectively csr and csw. The two invariants to
check for mutual exclusion were then:

∀i ∈ {0, 1, 2, 3},∀j ∈ {0, 1, 2, 3},∀i 6= j, pc[i] 6= csw ∨ pc[j] 6= csw (1)

which ensures strict mutual exclusion among writers,

∀i ∈ {0, 1, 2, 3},∀j ∈ {0, 1, 2, 3}, pc[i] 6= csw ∨ pc[j] 6= csr (2)

which guarantees mutual exclusion between readers and writers. These are
checked to be true in all reachable states, with pc[i] indicating the current label
of the i-th thread.

Two properties, which are checked to be true for every execution were used
to guarantee that there is no starvation:

∀i ∈ {0, 1, 2, 3}, pc[i] = r1 ∼> pc[i] = csr (3)

for reader starvation,

∀i ∈ {0, 1, 2, 3}, pc[i] = w1 ∼> pc[i] = csw (4)

for writer starvation. The symbol ∼> designs leads to, which means that in any
given execution if the first property is verified at some step, the second must be
verified at a later step.

In order to test whether there are any deadlocks in the algorithms, we made
the process a tripartite choice between executing the reader section, the writer
section, or an ”idle” section, which simulates a thread being away. That way, a
thread could repeatedly execute the idle section, and if there were a deadlock,
properties 3 or 4 would be violated.

5 Empirical Evaluation

In this section, we present the results from our experimental benchmarks, in
which we compare the different algorithms we presented. The benchmark we
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use is the same as [2]. We ran experiments on a Xeon Phi server, with x86
architecture, which possesses 64 cores, and 4 threads per core. The clock speed
of the cpus is of 1.30 MHz. For practical reasons, we limited our experiments to
192 threads, of the 256 available. We compare our locks, and the reader writer
lock from the pthread library, PThreadRW.

5.1 Throughput test

The first benchmark measures the throughput of the lock (total number of
threads executing their critical section), over a given amount of time (20s in
our experiments). During that time, a number of threads (which varies as
a parameter of the benchmark), randomely choose to execute either a read
or a write request, according to a specified probability. After executing their
critical section, threads execute a non-critical section before returning with a
new request. The length of both the critical section for readers and writers, as
well as the non-critical section can be adjusted, but we fixed the parameters to
RCSLen = 4, WCSLen = 4, and NCSLen = 32 in this experiment.

Figure 1 shows the results of the Throughput test. We can see that the
handover RW lock performs best in all tests when the number of threads is
high. It is also competitive even for loxer amounts of threads. Since read
requests can be executed in a parrallel fashion, it is no surprise to see much
higher throughput for lower percentages of writers. The limitation of hardware
appears as of 64 threads: in the 100% writer test, the performance is near
constant up to that point, and for the 0% writer case, the linear increase (which
appears exponential with the logscale on the x-axis) becomes logarithmic (linear
in appearance). H-RW manages to leverage the parrallelization of read requests
to improve throughput up to that point in all tests where there are readers, while
for the other RW locks the increased complexity of control code outshadows
those benefits. We can therefore see that it appears to be the only truely
scalable lock in our experiments.

When comparing it to its variations, it appears that satisfying more prop-
erties of phase-fairness comes at the cost of performance on this benchmark:
PA-H-RW outperforms SPA-H-RW, which beats PF-T-RW.

5.2 Dedicated test

In the dedicated benchmark, each thread is originally assigned a role: either
reader or writer. Exactly half of the threads are assigned to each. The test is
then the same as a throughput test, only a reader will always issue read requests
(and a writer writes). The total of reads and writes is then measured over a
given time (here 20s), and reported in Figure 2, for a varying number of total
threads.

In this test, we can see that PA-H-RW executes by far the most reads. This
is because contrary to the previous case, executing many write requests in a row
will not lead read requests to pile up, as all threads have a dedicated role. The
benefit of our two phased backoff, in which newly arriving readers can enter the
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Figure 1: Throughput test for RW locks with varying writer percentages. The
number of threads varies from 1 to 192 on a logscale on the X-axis. The Y-axis
shows the total number of operations for all threads.
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critical section while the writer hasn’t retracted backoff does become obvious,
by the huge advantage of PA-H-RW over SPA-H-RW, which executes at least as
many reader phases, but each of them much less efficient. H-RW, which favors
writers by chaining their requests compared to the alternating phase algorithms
unsurprisingly has the most write requests satisfied.

6 Conclusion

We developed a RW lock that offers highly scaling throughput in most cases (H-
RW). It does not, however, ensure fast read request satisfaction, nor the best
theoretical guarantees on write requests. However, as we saw in its variations
that approach phase-fairness as well as in our phase fair lock, these come at a
price in empirical performance. If these are worth the cost is entirely dependant
on the desired application.
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